mirror of
				https://gitee.com/gitea/gitea
				synced 2025-11-04 08:30:25 +08:00 
			
		
		
		
	* Add a storage layer for attachments * Fix some bug * fix test * Fix copyright head and lint * Fix bug * Add setting for minio and flags for migrate-storage * Add documents * fix lint * Add test for minio store type on attachments * fix test * fix test * Apply suggestions from code review Co-authored-by: guillep2k <18600385+guillep2k@users.noreply.github.com> * Add warning when storage migrated successfully * Fix drone * fix test * rebase * Fix test * display the error on console * Move minio test to amd64 since minio docker don't support arm64 * refactor the codes * add trace * Fix test * remove log on xorm * Fi download bug * Add a storage layer for attachments * Add setting for minio and flags for migrate-storage * fix lint * Add test for minio store type on attachments * Apply suggestions from code review Co-authored-by: guillep2k <18600385+guillep2k@users.noreply.github.com> * Fix drone * fix test * Fix test * display the error on console * Move minio test to amd64 since minio docker don't support arm64 * refactor the codes * add trace * Fix test * Add URL function to serve attachments directly from S3/Minio * Add ability to enable/disable redirection in attachment configuration * Fix typo * Add a storage layer for attachments * Add setting for minio and flags for migrate-storage * fix lint * Add test for minio store type on attachments * Apply suggestions from code review Co-authored-by: guillep2k <18600385+guillep2k@users.noreply.github.com> * Fix drone * fix test * Fix test * display the error on console * Move minio test to amd64 since minio docker don't support arm64 * don't change unrelated files * Fix lint * Fix build * update go.mod and go.sum * Use github.com/minio/minio-go/v6 * Remove unused function * Upgrade minio to v7 and some other improvements * fix lint * Fix go mod Co-authored-by: guillep2k <18600385+guillep2k@users.noreply.github.com> Co-authored-by: Tyler <tystuyfzand@gmail.com>
		
			
				
	
	
		
			1505 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			1505 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
 | 
						||
 | 
						||
// Package cpuid provides information about the CPU running the current program.
 | 
						||
//
 | 
						||
// CPU features are detected on startup, and kept for fast access through the life of the application.
 | 
						||
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
 | 
						||
//
 | 
						||
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
 | 
						||
//
 | 
						||
// Package home: https://github.com/klauspost/cpuid
 | 
						||
package cpuid
 | 
						||
 | 
						||
import (
 | 
						||
	"math"
 | 
						||
	"strings"
 | 
						||
)
 | 
						||
 | 
						||
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
 | 
						||
// and Processor Programming Reference (PPR)
 | 
						||
 | 
						||
// Vendor is a representation of a CPU vendor.
 | 
						||
type Vendor int
 | 
						||
 | 
						||
const (
 | 
						||
	Other Vendor = iota
 | 
						||
	Intel
 | 
						||
	AMD
 | 
						||
	VIA
 | 
						||
	Transmeta
 | 
						||
	NSC
 | 
						||
	KVM  // Kernel-based Virtual Machine
 | 
						||
	MSVM // Microsoft Hyper-V or Windows Virtual PC
 | 
						||
	VMware
 | 
						||
	XenHVM
 | 
						||
	Bhyve
 | 
						||
	Hygon
 | 
						||
	SiS
 | 
						||
	RDC
 | 
						||
)
 | 
						||
 | 
						||
const (
 | 
						||
	CMOV               = 1 << iota // i686 CMOV
 | 
						||
	NX                             // NX (No-Execute) bit
 | 
						||
	AMD3DNOW                       // AMD 3DNOW
 | 
						||
	AMD3DNOWEXT                    // AMD 3DNowExt
 | 
						||
	MMX                            // standard MMX
 | 
						||
	MMXEXT                         // SSE integer functions or AMD MMX ext
 | 
						||
	SSE                            // SSE functions
 | 
						||
	SSE2                           // P4 SSE functions
 | 
						||
	SSE3                           // Prescott SSE3 functions
 | 
						||
	SSSE3                          // Conroe SSSE3 functions
 | 
						||
	SSE4                           // Penryn SSE4.1 functions
 | 
						||
	SSE4A                          // AMD Barcelona microarchitecture SSE4a instructions
 | 
						||
	SSE42                          // Nehalem SSE4.2 functions
 | 
						||
	AVX                            // AVX functions
 | 
						||
	AVX2                           // AVX2 functions
 | 
						||
	FMA3                           // Intel FMA 3
 | 
						||
	FMA4                           // Bulldozer FMA4 functions
 | 
						||
	XOP                            // Bulldozer XOP functions
 | 
						||
	F16C                           // Half-precision floating-point conversion
 | 
						||
	BMI1                           // Bit Manipulation Instruction Set 1
 | 
						||
	BMI2                           // Bit Manipulation Instruction Set 2
 | 
						||
	TBM                            // AMD Trailing Bit Manipulation
 | 
						||
	LZCNT                          // LZCNT instruction
 | 
						||
	POPCNT                         // POPCNT instruction
 | 
						||
	AESNI                          // Advanced Encryption Standard New Instructions
 | 
						||
	CLMUL                          // Carry-less Multiplication
 | 
						||
	HTT                            // Hyperthreading (enabled)
 | 
						||
	HLE                            // Hardware Lock Elision
 | 
						||
	RTM                            // Restricted Transactional Memory
 | 
						||
	RDRAND                         // RDRAND instruction is available
 | 
						||
	RDSEED                         // RDSEED instruction is available
 | 
						||
	ADX                            // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | 
						||
	SHA                            // Intel SHA Extensions
 | 
						||
	AVX512F                        // AVX-512 Foundation
 | 
						||
	AVX512DQ                       // AVX-512 Doubleword and Quadword Instructions
 | 
						||
	AVX512IFMA                     // AVX-512 Integer Fused Multiply-Add Instructions
 | 
						||
	AVX512PF                       // AVX-512 Prefetch Instructions
 | 
						||
	AVX512ER                       // AVX-512 Exponential and Reciprocal Instructions
 | 
						||
	AVX512CD                       // AVX-512 Conflict Detection Instructions
 | 
						||
	AVX512BW                       // AVX-512 Byte and Word Instructions
 | 
						||
	AVX512VL                       // AVX-512 Vector Length Extensions
 | 
						||
	AVX512VBMI                     // AVX-512 Vector Bit Manipulation Instructions
 | 
						||
	AVX512VBMI2                    // AVX-512 Vector Bit Manipulation Instructions, Version 2
 | 
						||
	AVX512VNNI                     // AVX-512 Vector Neural Network Instructions
 | 
						||
	AVX512VPOPCNTDQ                // AVX-512 Vector Population Count Doubleword and Quadword
 | 
						||
	GFNI                           // Galois Field New Instructions
 | 
						||
	VAES                           // Vector AES
 | 
						||
	AVX512BITALG                   // AVX-512 Bit Algorithms
 | 
						||
	VPCLMULQDQ                     // Carry-Less Multiplication Quadword
 | 
						||
	AVX512BF16                     // AVX-512 BFLOAT16 Instructions
 | 
						||
	AVX512VP2INTERSECT             // AVX-512 Intersect for D/Q
 | 
						||
	MPX                            // Intel MPX (Memory Protection Extensions)
 | 
						||
	ERMS                           // Enhanced REP MOVSB/STOSB
 | 
						||
	RDTSCP                         // RDTSCP Instruction
 | 
						||
	CX16                           // CMPXCHG16B Instruction
 | 
						||
	SGX                            // Software Guard Extensions
 | 
						||
	SGXLC                          // Software Guard Extensions Launch Control
 | 
						||
	IBPB                           // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
 | 
						||
	STIBP                          // Single Thread Indirect Branch Predictors
 | 
						||
	VMX                            // Virtual Machine Extensions
 | 
						||
 | 
						||
	// Performance indicators
 | 
						||
	SSE2SLOW // SSE2 is supported, but usually not faster
 | 
						||
	SSE3SLOW // SSE3 is supported, but usually not faster
 | 
						||
	ATOM     // Atom processor, some SSSE3 instructions are slower
 | 
						||
)
 | 
						||
 | 
						||
var flagNames = map[Flags]string{
 | 
						||
	CMOV:               "CMOV",               // i686 CMOV
 | 
						||
	NX:                 "NX",                 // NX (No-Execute) bit
 | 
						||
	AMD3DNOW:           "AMD3DNOW",           // AMD 3DNOW
 | 
						||
	AMD3DNOWEXT:        "AMD3DNOWEXT",        // AMD 3DNowExt
 | 
						||
	MMX:                "MMX",                // Standard MMX
 | 
						||
	MMXEXT:             "MMXEXT",             // SSE integer functions or AMD MMX ext
 | 
						||
	SSE:                "SSE",                // SSE functions
 | 
						||
	SSE2:               "SSE2",               // P4 SSE2 functions
 | 
						||
	SSE3:               "SSE3",               // Prescott SSE3 functions
 | 
						||
	SSSE3:              "SSSE3",              // Conroe SSSE3 functions
 | 
						||
	SSE4:               "SSE4.1",             // Penryn SSE4.1 functions
 | 
						||
	SSE4A:              "SSE4A",              // AMD Barcelona microarchitecture SSE4a instructions
 | 
						||
	SSE42:              "SSE4.2",             // Nehalem SSE4.2 functions
 | 
						||
	AVX:                "AVX",                // AVX functions
 | 
						||
	AVX2:               "AVX2",               // AVX functions
 | 
						||
	FMA3:               "FMA3",               // Intel FMA 3
 | 
						||
	FMA4:               "FMA4",               // Bulldozer FMA4 functions
 | 
						||
	XOP:                "XOP",                // Bulldozer XOP functions
 | 
						||
	F16C:               "F16C",               // Half-precision floating-point conversion
 | 
						||
	BMI1:               "BMI1",               // Bit Manipulation Instruction Set 1
 | 
						||
	BMI2:               "BMI2",               // Bit Manipulation Instruction Set 2
 | 
						||
	TBM:                "TBM",                // AMD Trailing Bit Manipulation
 | 
						||
	LZCNT:              "LZCNT",              // LZCNT instruction
 | 
						||
	POPCNT:             "POPCNT",             // POPCNT instruction
 | 
						||
	AESNI:              "AESNI",              // Advanced Encryption Standard New Instructions
 | 
						||
	CLMUL:              "CLMUL",              // Carry-less Multiplication
 | 
						||
	HTT:                "HTT",                // Hyperthreading (enabled)
 | 
						||
	HLE:                "HLE",                // Hardware Lock Elision
 | 
						||
	RTM:                "RTM",                // Restricted Transactional Memory
 | 
						||
	RDRAND:             "RDRAND",             // RDRAND instruction is available
 | 
						||
	RDSEED:             "RDSEED",             // RDSEED instruction is available
 | 
						||
	ADX:                "ADX",                // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | 
						||
	SHA:                "SHA",                // Intel SHA Extensions
 | 
						||
	AVX512F:            "AVX512F",            // AVX-512 Foundation
 | 
						||
	AVX512DQ:           "AVX512DQ",           // AVX-512 Doubleword and Quadword Instructions
 | 
						||
	AVX512IFMA:         "AVX512IFMA",         // AVX-512 Integer Fused Multiply-Add Instructions
 | 
						||
	AVX512PF:           "AVX512PF",           // AVX-512 Prefetch Instructions
 | 
						||
	AVX512ER:           "AVX512ER",           // AVX-512 Exponential and Reciprocal Instructions
 | 
						||
	AVX512CD:           "AVX512CD",           // AVX-512 Conflict Detection Instructions
 | 
						||
	AVX512BW:           "AVX512BW",           // AVX-512 Byte and Word Instructions
 | 
						||
	AVX512VL:           "AVX512VL",           // AVX-512 Vector Length Extensions
 | 
						||
	AVX512VBMI:         "AVX512VBMI",         // AVX-512 Vector Bit Manipulation Instructions
 | 
						||
	AVX512VBMI2:        "AVX512VBMI2",        // AVX-512 Vector Bit Manipulation Instructions, Version 2
 | 
						||
	AVX512VNNI:         "AVX512VNNI",         // AVX-512 Vector Neural Network Instructions
 | 
						||
	AVX512VPOPCNTDQ:    "AVX512VPOPCNTDQ",    // AVX-512 Vector Population Count Doubleword and Quadword
 | 
						||
	GFNI:               "GFNI",               // Galois Field New Instructions
 | 
						||
	VAES:               "VAES",               // Vector AES
 | 
						||
	AVX512BITALG:       "AVX512BITALG",       // AVX-512 Bit Algorithms
 | 
						||
	VPCLMULQDQ:         "VPCLMULQDQ",         // Carry-Less Multiplication Quadword
 | 
						||
	AVX512BF16:         "AVX512BF16",         // AVX-512 BFLOAT16 Instruction
 | 
						||
	AVX512VP2INTERSECT: "AVX512VP2INTERSECT", // AVX-512 Intersect for D/Q
 | 
						||
	MPX:                "MPX",                // Intel MPX (Memory Protection Extensions)
 | 
						||
	ERMS:               "ERMS",               // Enhanced REP MOVSB/STOSB
 | 
						||
	RDTSCP:             "RDTSCP",             // RDTSCP Instruction
 | 
						||
	CX16:               "CX16",               // CMPXCHG16B Instruction
 | 
						||
	SGX:                "SGX",                // Software Guard Extensions
 | 
						||
	SGXLC:              "SGXLC",              // Software Guard Extensions Launch Control
 | 
						||
	IBPB:               "IBPB",               // Indirect Branch Restricted Speculation and Indirect Branch Predictor Barrier
 | 
						||
	STIBP:              "STIBP",              // Single Thread Indirect Branch Predictors
 | 
						||
	VMX:                "VMX",                // Virtual Machine Extensions
 | 
						||
 | 
						||
	// Performance indicators
 | 
						||
	SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
 | 
						||
	SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
 | 
						||
	ATOM:     "ATOM",     // Atom processor, some SSSE3 instructions are slower
 | 
						||
 | 
						||
}
 | 
						||
 | 
						||
/* all special features for arm64 should be defined here */
 | 
						||
const (
 | 
						||
	/* extension instructions */
 | 
						||
	FP ArmFlags = 1 << iota
 | 
						||
	ASIMD
 | 
						||
	EVTSTRM
 | 
						||
	AES
 | 
						||
	PMULL
 | 
						||
	SHA1
 | 
						||
	SHA2
 | 
						||
	CRC32
 | 
						||
	ATOMICS
 | 
						||
	FPHP
 | 
						||
	ASIMDHP
 | 
						||
	ARMCPUID
 | 
						||
	ASIMDRDM
 | 
						||
	JSCVT
 | 
						||
	FCMA
 | 
						||
	LRCPC
 | 
						||
	DCPOP
 | 
						||
	SHA3
 | 
						||
	SM3
 | 
						||
	SM4
 | 
						||
	ASIMDDP
 | 
						||
	SHA512
 | 
						||
	SVE
 | 
						||
	GPA
 | 
						||
)
 | 
						||
 | 
						||
var flagNamesArm = map[ArmFlags]string{
 | 
						||
	FP:       "FP",       // Single-precision and double-precision floating point
 | 
						||
	ASIMD:    "ASIMD",    // Advanced SIMD
 | 
						||
	EVTSTRM:  "EVTSTRM",  // Generic timer
 | 
						||
	AES:      "AES",      // AES instructions
 | 
						||
	PMULL:    "PMULL",    // Polynomial Multiply instructions (PMULL/PMULL2)
 | 
						||
	SHA1:     "SHA1",     // SHA-1 instructions (SHA1C, etc)
 | 
						||
	SHA2:     "SHA2",     // SHA-2 instructions (SHA256H, etc)
 | 
						||
	CRC32:    "CRC32",    // CRC32/CRC32C instructions
 | 
						||
	ATOMICS:  "ATOMICS",  // Large System Extensions (LSE)
 | 
						||
	FPHP:     "FPHP",     // Half-precision floating point
 | 
						||
	ASIMDHP:  "ASIMDHP",  // Advanced SIMD half-precision floating point
 | 
						||
	ARMCPUID: "CPUID",    // Some CPU ID registers readable at user-level
 | 
						||
	ASIMDRDM: "ASIMDRDM", // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
 | 
						||
	JSCVT:    "JSCVT",    // Javascript-style double->int convert (FJCVTZS)
 | 
						||
	FCMA:     "FCMA",     // Floatin point complex number addition and multiplication
 | 
						||
	LRCPC:    "LRCPC",    // Weaker release consistency (LDAPR, etc)
 | 
						||
	DCPOP:    "DCPOP",    // Data cache clean to Point of Persistence (DC CVAP)
 | 
						||
	SHA3:     "SHA3",     // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
 | 
						||
	SM3:      "SM3",      // SM3 instructions
 | 
						||
	SM4:      "SM4",      // SM4 instructions
 | 
						||
	ASIMDDP:  "ASIMDDP",  // SIMD Dot Product
 | 
						||
	SHA512:   "SHA512",   // SHA512 instructions
 | 
						||
	SVE:      "SVE",      // Scalable Vector Extension
 | 
						||
	GPA:      "GPA",      // Generic Pointer Authentication
 | 
						||
}
 | 
						||
 | 
						||
// CPUInfo contains information about the detected system CPU.
 | 
						||
type CPUInfo struct {
 | 
						||
	BrandName      string   // Brand name reported by the CPU
 | 
						||
	VendorID       Vendor   // Comparable CPU vendor ID
 | 
						||
	VendorString   string   // Raw vendor string.
 | 
						||
	Features       Flags    // Features of the CPU (x64)
 | 
						||
	Arm            ArmFlags // Features of the CPU (arm)
 | 
						||
	PhysicalCores  int      // Number of physical processor cores in your CPU. Will be 0 if undetectable.
 | 
						||
	ThreadsPerCore int      // Number of threads per physical core. Will be 1 if undetectable.
 | 
						||
	LogicalCores   int      // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
 | 
						||
	Family         int      // CPU family number
 | 
						||
	Model          int      // CPU model number
 | 
						||
	CacheLine      int      // Cache line size in bytes. Will be 0 if undetectable.
 | 
						||
	Hz             int64    // Clock speed, if known
 | 
						||
	Cache          struct {
 | 
						||
		L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
 | 
						||
		L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
 | 
						||
		L2  int // L2 Cache (per core or shared). Will be -1 if undetected
 | 
						||
		L3  int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
 | 
						||
	}
 | 
						||
	SGX       SGXSupport
 | 
						||
	maxFunc   uint32
 | 
						||
	maxExFunc uint32
 | 
						||
}
 | 
						||
 | 
						||
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
 | 
						||
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
 | 
						||
var xgetbv func(index uint32) (eax, edx uint32)
 | 
						||
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
 | 
						||
 | 
						||
// CPU contains information about the CPU as detected on startup,
 | 
						||
// or when Detect last was called.
 | 
						||
//
 | 
						||
// Use this as the primary entry point to you data.
 | 
						||
var CPU CPUInfo
 | 
						||
 | 
						||
func init() {
 | 
						||
	initCPU()
 | 
						||
	Detect()
 | 
						||
}
 | 
						||
 | 
						||
// Detect will re-detect current CPU info.
 | 
						||
// This will replace the content of the exported CPU variable.
 | 
						||
//
 | 
						||
// Unless you expect the CPU to change while you are running your program
 | 
						||
// you should not need to call this function.
 | 
						||
// If you call this, you must ensure that no other goroutine is accessing the
 | 
						||
// exported CPU variable.
 | 
						||
func Detect() {
 | 
						||
	// Set defaults
 | 
						||
	CPU.ThreadsPerCore = 1
 | 
						||
	CPU.Cache.L1I = -1
 | 
						||
	CPU.Cache.L1D = -1
 | 
						||
	CPU.Cache.L2 = -1
 | 
						||
	CPU.Cache.L3 = -1
 | 
						||
	addInfo(&CPU)
 | 
						||
}
 | 
						||
 | 
						||
// Generated here: http://play.golang.org/p/BxFH2Gdc0G
 | 
						||
 | 
						||
// Cmov indicates support of CMOV instructions
 | 
						||
func (c CPUInfo) Cmov() bool {
 | 
						||
	return c.Features&CMOV != 0
 | 
						||
}
 | 
						||
 | 
						||
// Amd3dnow indicates support of AMD 3DNOW! instructions
 | 
						||
func (c CPUInfo) Amd3dnow() bool {
 | 
						||
	return c.Features&AMD3DNOW != 0
 | 
						||
}
 | 
						||
 | 
						||
// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
 | 
						||
func (c CPUInfo) Amd3dnowExt() bool {
 | 
						||
	return c.Features&AMD3DNOWEXT != 0
 | 
						||
}
 | 
						||
 | 
						||
// VMX indicates support of VMX
 | 
						||
func (c CPUInfo) VMX() bool {
 | 
						||
	return c.Features&VMX != 0
 | 
						||
}
 | 
						||
 | 
						||
// MMX indicates support of MMX instructions
 | 
						||
func (c CPUInfo) MMX() bool {
 | 
						||
	return c.Features&MMX != 0
 | 
						||
}
 | 
						||
 | 
						||
// MMXExt indicates support of MMXEXT instructions
 | 
						||
// (SSE integer functions or AMD MMX ext)
 | 
						||
func (c CPUInfo) MMXExt() bool {
 | 
						||
	return c.Features&MMXEXT != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE indicates support of SSE instructions
 | 
						||
func (c CPUInfo) SSE() bool {
 | 
						||
	return c.Features&SSE != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE2 indicates support of SSE 2 instructions
 | 
						||
func (c CPUInfo) SSE2() bool {
 | 
						||
	return c.Features&SSE2 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE3 indicates support of SSE 3 instructions
 | 
						||
func (c CPUInfo) SSE3() bool {
 | 
						||
	return c.Features&SSE3 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSSE3 indicates support of SSSE 3 instructions
 | 
						||
func (c CPUInfo) SSSE3() bool {
 | 
						||
	return c.Features&SSSE3 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
 | 
						||
func (c CPUInfo) SSE4() bool {
 | 
						||
	return c.Features&SSE4 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE42 indicates support of SSE4.2 instructions
 | 
						||
func (c CPUInfo) SSE42() bool {
 | 
						||
	return c.Features&SSE42 != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX indicates support of AVX instructions
 | 
						||
// and operating system support of AVX instructions
 | 
						||
func (c CPUInfo) AVX() bool {
 | 
						||
	return c.Features&AVX != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX2 indicates support of AVX2 instructions
 | 
						||
func (c CPUInfo) AVX2() bool {
 | 
						||
	return c.Features&AVX2 != 0
 | 
						||
}
 | 
						||
 | 
						||
// FMA3 indicates support of FMA3 instructions
 | 
						||
func (c CPUInfo) FMA3() bool {
 | 
						||
	return c.Features&FMA3 != 0
 | 
						||
}
 | 
						||
 | 
						||
// FMA4 indicates support of FMA4 instructions
 | 
						||
func (c CPUInfo) FMA4() bool {
 | 
						||
	return c.Features&FMA4 != 0
 | 
						||
}
 | 
						||
 | 
						||
// XOP indicates support of XOP instructions
 | 
						||
func (c CPUInfo) XOP() bool {
 | 
						||
	return c.Features&XOP != 0
 | 
						||
}
 | 
						||
 | 
						||
// F16C indicates support of F16C instructions
 | 
						||
func (c CPUInfo) F16C() bool {
 | 
						||
	return c.Features&F16C != 0
 | 
						||
}
 | 
						||
 | 
						||
// BMI1 indicates support of BMI1 instructions
 | 
						||
func (c CPUInfo) BMI1() bool {
 | 
						||
	return c.Features&BMI1 != 0
 | 
						||
}
 | 
						||
 | 
						||
// BMI2 indicates support of BMI2 instructions
 | 
						||
func (c CPUInfo) BMI2() bool {
 | 
						||
	return c.Features&BMI2 != 0
 | 
						||
}
 | 
						||
 | 
						||
// TBM indicates support of TBM instructions
 | 
						||
// (AMD Trailing Bit Manipulation)
 | 
						||
func (c CPUInfo) TBM() bool {
 | 
						||
	return c.Features&TBM != 0
 | 
						||
}
 | 
						||
 | 
						||
// Lzcnt indicates support of LZCNT instruction
 | 
						||
func (c CPUInfo) Lzcnt() bool {
 | 
						||
	return c.Features&LZCNT != 0
 | 
						||
}
 | 
						||
 | 
						||
// Popcnt indicates support of POPCNT instruction
 | 
						||
func (c CPUInfo) Popcnt() bool {
 | 
						||
	return c.Features&POPCNT != 0
 | 
						||
}
 | 
						||
 | 
						||
// HTT indicates the processor has Hyperthreading enabled
 | 
						||
func (c CPUInfo) HTT() bool {
 | 
						||
	return c.Features&HTT != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE2Slow indicates that SSE2 may be slow on this processor
 | 
						||
func (c CPUInfo) SSE2Slow() bool {
 | 
						||
	return c.Features&SSE2SLOW != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE3Slow indicates that SSE3 may be slow on this processor
 | 
						||
func (c CPUInfo) SSE3Slow() bool {
 | 
						||
	return c.Features&SSE3SLOW != 0
 | 
						||
}
 | 
						||
 | 
						||
// AesNi indicates support of AES-NI instructions
 | 
						||
// (Advanced Encryption Standard New Instructions)
 | 
						||
func (c CPUInfo) AesNi() bool {
 | 
						||
	return c.Features&AESNI != 0
 | 
						||
}
 | 
						||
 | 
						||
// Clmul indicates support of CLMUL instructions
 | 
						||
// (Carry-less Multiplication)
 | 
						||
func (c CPUInfo) Clmul() bool {
 | 
						||
	return c.Features&CLMUL != 0
 | 
						||
}
 | 
						||
 | 
						||
// NX indicates support of NX (No-Execute) bit
 | 
						||
func (c CPUInfo) NX() bool {
 | 
						||
	return c.Features&NX != 0
 | 
						||
}
 | 
						||
 | 
						||
// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
 | 
						||
func (c CPUInfo) SSE4A() bool {
 | 
						||
	return c.Features&SSE4A != 0
 | 
						||
}
 | 
						||
 | 
						||
// HLE indicates support of Hardware Lock Elision
 | 
						||
func (c CPUInfo) HLE() bool {
 | 
						||
	return c.Features&HLE != 0
 | 
						||
}
 | 
						||
 | 
						||
// RTM indicates support of Restricted Transactional Memory
 | 
						||
func (c CPUInfo) RTM() bool {
 | 
						||
	return c.Features&RTM != 0
 | 
						||
}
 | 
						||
 | 
						||
// Rdrand indicates support of RDRAND instruction is available
 | 
						||
func (c CPUInfo) Rdrand() bool {
 | 
						||
	return c.Features&RDRAND != 0
 | 
						||
}
 | 
						||
 | 
						||
// Rdseed indicates support of RDSEED instruction is available
 | 
						||
func (c CPUInfo) Rdseed() bool {
 | 
						||
	return c.Features&RDSEED != 0
 | 
						||
}
 | 
						||
 | 
						||
// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | 
						||
func (c CPUInfo) ADX() bool {
 | 
						||
	return c.Features&ADX != 0
 | 
						||
}
 | 
						||
 | 
						||
// SHA indicates support of Intel SHA Extensions
 | 
						||
func (c CPUInfo) SHA() bool {
 | 
						||
	return c.Features&SHA != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512F indicates support of AVX-512 Foundation
 | 
						||
func (c CPUInfo) AVX512F() bool {
 | 
						||
	return c.Features&AVX512F != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
 | 
						||
func (c CPUInfo) AVX512DQ() bool {
 | 
						||
	return c.Features&AVX512DQ != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
 | 
						||
func (c CPUInfo) AVX512IFMA() bool {
 | 
						||
	return c.Features&AVX512IFMA != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512PF indicates support of AVX-512 Prefetch Instructions
 | 
						||
func (c CPUInfo) AVX512PF() bool {
 | 
						||
	return c.Features&AVX512PF != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
 | 
						||
func (c CPUInfo) AVX512ER() bool {
 | 
						||
	return c.Features&AVX512ER != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
 | 
						||
func (c CPUInfo) AVX512CD() bool {
 | 
						||
	return c.Features&AVX512CD != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512BW indicates support of AVX-512 Byte and Word Instructions
 | 
						||
func (c CPUInfo) AVX512BW() bool {
 | 
						||
	return c.Features&AVX512BW != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512VL indicates support of AVX-512 Vector Length Extensions
 | 
						||
func (c CPUInfo) AVX512VL() bool {
 | 
						||
	return c.Features&AVX512VL != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
 | 
						||
func (c CPUInfo) AVX512VBMI() bool {
 | 
						||
	return c.Features&AVX512VBMI != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512VBMI2 indicates support of AVX-512 Vector Bit Manipulation Instructions, Version 2
 | 
						||
func (c CPUInfo) AVX512VBMI2() bool {
 | 
						||
	return c.Features&AVX512VBMI2 != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512VNNI indicates support of AVX-512 Vector Neural Network Instructions
 | 
						||
func (c CPUInfo) AVX512VNNI() bool {
 | 
						||
	return c.Features&AVX512VNNI != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512VPOPCNTDQ indicates support of AVX-512 Vector Population Count Doubleword and Quadword
 | 
						||
func (c CPUInfo) AVX512VPOPCNTDQ() bool {
 | 
						||
	return c.Features&AVX512VPOPCNTDQ != 0
 | 
						||
}
 | 
						||
 | 
						||
// GFNI indicates support of Galois Field New Instructions
 | 
						||
func (c CPUInfo) GFNI() bool {
 | 
						||
	return c.Features&GFNI != 0
 | 
						||
}
 | 
						||
 | 
						||
// VAES indicates support of Vector AES
 | 
						||
func (c CPUInfo) VAES() bool {
 | 
						||
	return c.Features&VAES != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512BITALG indicates support of AVX-512 Bit Algorithms
 | 
						||
func (c CPUInfo) AVX512BITALG() bool {
 | 
						||
	return c.Features&AVX512BITALG != 0
 | 
						||
}
 | 
						||
 | 
						||
// VPCLMULQDQ indicates support of Carry-Less Multiplication Quadword
 | 
						||
func (c CPUInfo) VPCLMULQDQ() bool {
 | 
						||
	return c.Features&VPCLMULQDQ != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512BF16 indicates support of
 | 
						||
func (c CPUInfo) AVX512BF16() bool {
 | 
						||
	return c.Features&AVX512BF16 != 0
 | 
						||
}
 | 
						||
 | 
						||
// AVX512VP2INTERSECT indicates support of
 | 
						||
func (c CPUInfo) AVX512VP2INTERSECT() bool {
 | 
						||
	return c.Features&AVX512VP2INTERSECT != 0
 | 
						||
}
 | 
						||
 | 
						||
// MPX indicates support of Intel MPX (Memory Protection Extensions)
 | 
						||
func (c CPUInfo) MPX() bool {
 | 
						||
	return c.Features&MPX != 0
 | 
						||
}
 | 
						||
 | 
						||
// ERMS indicates support of Enhanced REP MOVSB/STOSB
 | 
						||
func (c CPUInfo) ERMS() bool {
 | 
						||
	return c.Features&ERMS != 0
 | 
						||
}
 | 
						||
 | 
						||
// RDTSCP Instruction is available.
 | 
						||
func (c CPUInfo) RDTSCP() bool {
 | 
						||
	return c.Features&RDTSCP != 0
 | 
						||
}
 | 
						||
 | 
						||
// CX16 indicates if CMPXCHG16B instruction is available.
 | 
						||
func (c CPUInfo) CX16() bool {
 | 
						||
	return c.Features&CX16 != 0
 | 
						||
}
 | 
						||
 | 
						||
// TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
 | 
						||
// So TSX simply checks that.
 | 
						||
func (c CPUInfo) TSX() bool {
 | 
						||
	return c.Features&(HLE|RTM) == HLE|RTM
 | 
						||
}
 | 
						||
 | 
						||
// Atom indicates an Atom processor
 | 
						||
func (c CPUInfo) Atom() bool {
 | 
						||
	return c.Features&ATOM != 0
 | 
						||
}
 | 
						||
 | 
						||
// Intel returns true if vendor is recognized as Intel
 | 
						||
func (c CPUInfo) Intel() bool {
 | 
						||
	return c.VendorID == Intel
 | 
						||
}
 | 
						||
 | 
						||
// AMD returns true if vendor is recognized as AMD
 | 
						||
func (c CPUInfo) AMD() bool {
 | 
						||
	return c.VendorID == AMD
 | 
						||
}
 | 
						||
 | 
						||
// Hygon returns true if vendor is recognized as Hygon
 | 
						||
func (c CPUInfo) Hygon() bool {
 | 
						||
	return c.VendorID == Hygon
 | 
						||
}
 | 
						||
 | 
						||
// Transmeta returns true if vendor is recognized as Transmeta
 | 
						||
func (c CPUInfo) Transmeta() bool {
 | 
						||
	return c.VendorID == Transmeta
 | 
						||
}
 | 
						||
 | 
						||
// NSC returns true if vendor is recognized as National Semiconductor
 | 
						||
func (c CPUInfo) NSC() bool {
 | 
						||
	return c.VendorID == NSC
 | 
						||
}
 | 
						||
 | 
						||
// VIA returns true if vendor is recognized as VIA
 | 
						||
func (c CPUInfo) VIA() bool {
 | 
						||
	return c.VendorID == VIA
 | 
						||
}
 | 
						||
 | 
						||
// RTCounter returns the 64-bit time-stamp counter
 | 
						||
// Uses the RDTSCP instruction. The value 0 is returned
 | 
						||
// if the CPU does not support the instruction.
 | 
						||
func (c CPUInfo) RTCounter() uint64 {
 | 
						||
	if !c.RDTSCP() {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	a, _, _, d := rdtscpAsm()
 | 
						||
	return uint64(a) | (uint64(d) << 32)
 | 
						||
}
 | 
						||
 | 
						||
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
 | 
						||
// This variable is OS dependent, but on Linux contains information
 | 
						||
// about the current cpu/core the code is running on.
 | 
						||
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
 | 
						||
func (c CPUInfo) Ia32TscAux() uint32 {
 | 
						||
	if !c.RDTSCP() {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	_, _, ecx, _ := rdtscpAsm()
 | 
						||
	return ecx
 | 
						||
}
 | 
						||
 | 
						||
// LogicalCPU will return the Logical CPU the code is currently executing on.
 | 
						||
// This is likely to change when the OS re-schedules the running thread
 | 
						||
// to another CPU.
 | 
						||
// If the current core cannot be detected, -1 will be returned.
 | 
						||
func (c CPUInfo) LogicalCPU() int {
 | 
						||
	if c.maxFunc < 1 {
 | 
						||
		return -1
 | 
						||
	}
 | 
						||
	_, ebx, _, _ := cpuid(1)
 | 
						||
	return int(ebx >> 24)
 | 
						||
}
 | 
						||
 | 
						||
// hertz tries to compute the clock speed of the CPU. If leaf 15 is
 | 
						||
// supported, use it, otherwise parse the brand string. Yes, really.
 | 
						||
func hertz(model string) int64 {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	if mfi >= 0x15 {
 | 
						||
		eax, ebx, ecx, _ := cpuid(0x15)
 | 
						||
		if eax != 0 && ebx != 0 && ecx != 0 {
 | 
						||
			return int64((int64(ecx) * int64(ebx)) / int64(eax))
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// computeHz determines the official rated speed of a CPU from its brand
 | 
						||
	// string. This insanity is *actually the official documented way to do
 | 
						||
	// this according to Intel*, prior to leaf 0x15 existing. The official
 | 
						||
	// documentation only shows this working for exactly `x.xx` or `xxxx`
 | 
						||
	// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
 | 
						||
	// sizes.
 | 
						||
	hz := strings.LastIndex(model, "Hz")
 | 
						||
	if hz < 3 {
 | 
						||
		return -1
 | 
						||
	}
 | 
						||
	var multiplier int64
 | 
						||
	switch model[hz-1] {
 | 
						||
	case 'M':
 | 
						||
		multiplier = 1000 * 1000
 | 
						||
	case 'G':
 | 
						||
		multiplier = 1000 * 1000 * 1000
 | 
						||
	case 'T':
 | 
						||
		multiplier = 1000 * 1000 * 1000 * 1000
 | 
						||
	}
 | 
						||
	if multiplier == 0 {
 | 
						||
		return -1
 | 
						||
	}
 | 
						||
	freq := int64(0)
 | 
						||
	divisor := int64(0)
 | 
						||
	decimalShift := int64(1)
 | 
						||
	var i int
 | 
						||
	for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
 | 
						||
		if model[i] >= '0' && model[i] <= '9' {
 | 
						||
			freq += int64(model[i]-'0') * decimalShift
 | 
						||
			decimalShift *= 10
 | 
						||
		} else if model[i] == '.' {
 | 
						||
			if divisor != 0 {
 | 
						||
				return -1
 | 
						||
			}
 | 
						||
			divisor = decimalShift
 | 
						||
		} else {
 | 
						||
			return -1
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// we didn't find a space
 | 
						||
	if i < 0 {
 | 
						||
		return -1
 | 
						||
	}
 | 
						||
	if divisor != 0 {
 | 
						||
		return (freq * multiplier) / divisor
 | 
						||
	}
 | 
						||
	return freq * multiplier
 | 
						||
}
 | 
						||
 | 
						||
// VM Will return true if the cpu id indicates we are in
 | 
						||
// a virtual machine. This is only a hint, and will very likely
 | 
						||
// have many false negatives.
 | 
						||
func (c CPUInfo) VM() bool {
 | 
						||
	switch c.VendorID {
 | 
						||
	case MSVM, KVM, VMware, XenHVM, Bhyve:
 | 
						||
		return true
 | 
						||
	}
 | 
						||
	return false
 | 
						||
}
 | 
						||
 | 
						||
// Flags contains detected cpu features and characteristics
 | 
						||
type Flags uint64
 | 
						||
 | 
						||
// ArmFlags contains detected ARM cpu features and characteristics
 | 
						||
type ArmFlags uint64
 | 
						||
 | 
						||
// String returns a string representation of the detected
 | 
						||
// CPU features.
 | 
						||
func (f Flags) String() string {
 | 
						||
	return strings.Join(f.Strings(), ",")
 | 
						||
}
 | 
						||
 | 
						||
// Strings returns an array of the detected features.
 | 
						||
func (f Flags) Strings() []string {
 | 
						||
	r := make([]string, 0, 20)
 | 
						||
	for i := uint(0); i < 64; i++ {
 | 
						||
		key := Flags(1 << i)
 | 
						||
		val := flagNames[key]
 | 
						||
		if f&key != 0 {
 | 
						||
			r = append(r, val)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return r
 | 
						||
}
 | 
						||
 | 
						||
// String returns a string representation of the detected
 | 
						||
// CPU features.
 | 
						||
func (f ArmFlags) String() string {
 | 
						||
	return strings.Join(f.Strings(), ",")
 | 
						||
}
 | 
						||
 | 
						||
// Strings returns an array of the detected features.
 | 
						||
func (f ArmFlags) Strings() []string {
 | 
						||
	r := make([]string, 0, 20)
 | 
						||
	for i := uint(0); i < 64; i++ {
 | 
						||
		key := ArmFlags(1 << i)
 | 
						||
		val := flagNamesArm[key]
 | 
						||
		if f&key != 0 {
 | 
						||
			r = append(r, val)
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return r
 | 
						||
}
 | 
						||
func maxExtendedFunction() uint32 {
 | 
						||
	eax, _, _, _ := cpuid(0x80000000)
 | 
						||
	return eax
 | 
						||
}
 | 
						||
 | 
						||
func maxFunctionID() uint32 {
 | 
						||
	a, _, _, _ := cpuid(0)
 | 
						||
	return a
 | 
						||
}
 | 
						||
 | 
						||
func brandName() string {
 | 
						||
	if maxExtendedFunction() >= 0x80000004 {
 | 
						||
		v := make([]uint32, 0, 48)
 | 
						||
		for i := uint32(0); i < 3; i++ {
 | 
						||
			a, b, c, d := cpuid(0x80000002 + i)
 | 
						||
			v = append(v, a, b, c, d)
 | 
						||
		}
 | 
						||
		return strings.Trim(string(valAsString(v...)), " ")
 | 
						||
	}
 | 
						||
	return "unknown"
 | 
						||
}
 | 
						||
 | 
						||
func threadsPerCore() int {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	vend, _ := vendorID()
 | 
						||
 | 
						||
	if mfi < 0x4 || (vend != Intel && vend != AMD) {
 | 
						||
		return 1
 | 
						||
	}
 | 
						||
 | 
						||
	if mfi < 0xb {
 | 
						||
		if vend != Intel {
 | 
						||
			return 1
 | 
						||
		}
 | 
						||
		_, b, _, d := cpuid(1)
 | 
						||
		if (d & (1 << 28)) != 0 {
 | 
						||
			// v will contain logical core count
 | 
						||
			v := (b >> 16) & 255
 | 
						||
			if v > 1 {
 | 
						||
				a4, _, _, _ := cpuid(4)
 | 
						||
				// physical cores
 | 
						||
				v2 := (a4 >> 26) + 1
 | 
						||
				if v2 > 0 {
 | 
						||
					return int(v) / int(v2)
 | 
						||
				}
 | 
						||
			}
 | 
						||
		}
 | 
						||
		return 1
 | 
						||
	}
 | 
						||
	_, b, _, _ := cpuidex(0xb, 0)
 | 
						||
	if b&0xffff == 0 {
 | 
						||
		return 1
 | 
						||
	}
 | 
						||
	return int(b & 0xffff)
 | 
						||
}
 | 
						||
 | 
						||
func logicalCores() int {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	v, _ := vendorID()
 | 
						||
	switch v {
 | 
						||
	case Intel:
 | 
						||
		// Use this on old Intel processors
 | 
						||
		if mfi < 0xb {
 | 
						||
			if mfi < 1 {
 | 
						||
				return 0
 | 
						||
			}
 | 
						||
			// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
 | 
						||
			// that can be assigned to logical processors in a physical package.
 | 
						||
			// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
 | 
						||
			_, ebx, _, _ := cpuid(1)
 | 
						||
			logical := (ebx >> 16) & 0xff
 | 
						||
			return int(logical)
 | 
						||
		}
 | 
						||
		_, b, _, _ := cpuidex(0xb, 1)
 | 
						||
		return int(b & 0xffff)
 | 
						||
	case AMD, Hygon:
 | 
						||
		_, b, _, _ := cpuid(1)
 | 
						||
		return int((b >> 16) & 0xff)
 | 
						||
	default:
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
}
 | 
						||
 | 
						||
func familyModel() (int, int) {
 | 
						||
	if maxFunctionID() < 0x1 {
 | 
						||
		return 0, 0
 | 
						||
	}
 | 
						||
	eax, _, _, _ := cpuid(1)
 | 
						||
	family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
 | 
						||
	model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
 | 
						||
	return int(family), int(model)
 | 
						||
}
 | 
						||
 | 
						||
func physicalCores() int {
 | 
						||
	v, _ := vendorID()
 | 
						||
	switch v {
 | 
						||
	case Intel:
 | 
						||
		return logicalCores() / threadsPerCore()
 | 
						||
	case AMD, Hygon:
 | 
						||
		lc := logicalCores()
 | 
						||
		tpc := threadsPerCore()
 | 
						||
		if lc > 0 && tpc > 0 {
 | 
						||
			return lc / tpc
 | 
						||
		}
 | 
						||
		// The following is inaccurate on AMD EPYC 7742 64-Core Processor
 | 
						||
 | 
						||
		if maxExtendedFunction() >= 0x80000008 {
 | 
						||
			_, _, c, _ := cpuid(0x80000008)
 | 
						||
			return int(c&0xff) + 1
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return 0
 | 
						||
}
 | 
						||
 | 
						||
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
 | 
						||
var vendorMapping = map[string]Vendor{
 | 
						||
	"AMDisbetter!": AMD,
 | 
						||
	"AuthenticAMD": AMD,
 | 
						||
	"CentaurHauls": VIA,
 | 
						||
	"GenuineIntel": Intel,
 | 
						||
	"TransmetaCPU": Transmeta,
 | 
						||
	"GenuineTMx86": Transmeta,
 | 
						||
	"Geode by NSC": NSC,
 | 
						||
	"VIA VIA VIA ": VIA,
 | 
						||
	"KVMKVMKVMKVM": KVM,
 | 
						||
	"Microsoft Hv": MSVM,
 | 
						||
	"VMwareVMware": VMware,
 | 
						||
	"XenVMMXenVMM": XenHVM,
 | 
						||
	"bhyve bhyve ": Bhyve,
 | 
						||
	"HygonGenuine": Hygon,
 | 
						||
	"Vortex86 SoC": SiS,
 | 
						||
	"SiS SiS SiS ": SiS,
 | 
						||
	"RiseRiseRise": SiS,
 | 
						||
	"Genuine  RDC": RDC,
 | 
						||
}
 | 
						||
 | 
						||
func vendorID() (Vendor, string) {
 | 
						||
	_, b, c, d := cpuid(0)
 | 
						||
	v := string(valAsString(b, d, c))
 | 
						||
	vend, ok := vendorMapping[v]
 | 
						||
	if !ok {
 | 
						||
		return Other, v
 | 
						||
	}
 | 
						||
	return vend, v
 | 
						||
}
 | 
						||
 | 
						||
func cacheLine() int {
 | 
						||
	if maxFunctionID() < 0x1 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
 | 
						||
	_, ebx, _, _ := cpuid(1)
 | 
						||
	cache := (ebx & 0xff00) >> 5 // cflush size
 | 
						||
	if cache == 0 && maxExtendedFunction() >= 0x80000006 {
 | 
						||
		_, _, ecx, _ := cpuid(0x80000006)
 | 
						||
		cache = ecx & 0xff // cacheline size
 | 
						||
	}
 | 
						||
	// TODO: Read from Cache and TLB Information
 | 
						||
	return int(cache)
 | 
						||
}
 | 
						||
 | 
						||
func (c *CPUInfo) cacheSize() {
 | 
						||
	c.Cache.L1D = -1
 | 
						||
	c.Cache.L1I = -1
 | 
						||
	c.Cache.L2 = -1
 | 
						||
	c.Cache.L3 = -1
 | 
						||
	vendor, _ := vendorID()
 | 
						||
	switch vendor {
 | 
						||
	case Intel:
 | 
						||
		if maxFunctionID() < 4 {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		for i := uint32(0); ; i++ {
 | 
						||
			eax, ebx, ecx, _ := cpuidex(4, i)
 | 
						||
			cacheType := eax & 15
 | 
						||
			if cacheType == 0 {
 | 
						||
				break
 | 
						||
			}
 | 
						||
			cacheLevel := (eax >> 5) & 7
 | 
						||
			coherency := int(ebx&0xfff) + 1
 | 
						||
			partitions := int((ebx>>12)&0x3ff) + 1
 | 
						||
			associativity := int((ebx>>22)&0x3ff) + 1
 | 
						||
			sets := int(ecx) + 1
 | 
						||
			size := associativity * partitions * coherency * sets
 | 
						||
			switch cacheLevel {
 | 
						||
			case 1:
 | 
						||
				if cacheType == 1 {
 | 
						||
					// 1 = Data Cache
 | 
						||
					c.Cache.L1D = size
 | 
						||
				} else if cacheType == 2 {
 | 
						||
					// 2 = Instruction Cache
 | 
						||
					c.Cache.L1I = size
 | 
						||
				} else {
 | 
						||
					if c.Cache.L1D < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
					if c.Cache.L1I < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
				}
 | 
						||
			case 2:
 | 
						||
				c.Cache.L2 = size
 | 
						||
			case 3:
 | 
						||
				c.Cache.L3 = size
 | 
						||
			}
 | 
						||
		}
 | 
						||
	case AMD, Hygon:
 | 
						||
		// Untested.
 | 
						||
		if maxExtendedFunction() < 0x80000005 {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		_, _, ecx, edx := cpuid(0x80000005)
 | 
						||
		c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
 | 
						||
		c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
 | 
						||
 | 
						||
		if maxExtendedFunction() < 0x80000006 {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		_, _, ecx, _ = cpuid(0x80000006)
 | 
						||
		c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
 | 
						||
 | 
						||
		// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
 | 
						||
		if maxExtendedFunction() < 0x8000001D {
 | 
						||
			return
 | 
						||
		}
 | 
						||
		for i := uint32(0); i < math.MaxUint32; i++ {
 | 
						||
			eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
 | 
						||
 | 
						||
			level := (eax >> 5) & 7
 | 
						||
			cacheNumSets := ecx + 1
 | 
						||
			cacheLineSize := 1 + (ebx & 2047)
 | 
						||
			cachePhysPartitions := 1 + ((ebx >> 12) & 511)
 | 
						||
			cacheNumWays := 1 + ((ebx >> 22) & 511)
 | 
						||
 | 
						||
			typ := eax & 15
 | 
						||
			size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
 | 
						||
			if typ == 0 {
 | 
						||
				return
 | 
						||
			}
 | 
						||
 | 
						||
			switch level {
 | 
						||
			case 1:
 | 
						||
				switch typ {
 | 
						||
				case 1:
 | 
						||
					// Data cache
 | 
						||
					c.Cache.L1D = size
 | 
						||
				case 2:
 | 
						||
					// Inst cache
 | 
						||
					c.Cache.L1I = size
 | 
						||
				default:
 | 
						||
					if c.Cache.L1D < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
					if c.Cache.L1I < 0 {
 | 
						||
						c.Cache.L1I = size
 | 
						||
					}
 | 
						||
				}
 | 
						||
			case 2:
 | 
						||
				c.Cache.L2 = size
 | 
						||
			case 3:
 | 
						||
				c.Cache.L3 = size
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	return
 | 
						||
}
 | 
						||
 | 
						||
type SGXEPCSection struct {
 | 
						||
	BaseAddress uint64
 | 
						||
	EPCSize     uint64
 | 
						||
}
 | 
						||
 | 
						||
type SGXSupport struct {
 | 
						||
	Available           bool
 | 
						||
	LaunchControl       bool
 | 
						||
	SGX1Supported       bool
 | 
						||
	SGX2Supported       bool
 | 
						||
	MaxEnclaveSizeNot64 int64
 | 
						||
	MaxEnclaveSize64    int64
 | 
						||
	EPCSections         []SGXEPCSection
 | 
						||
}
 | 
						||
 | 
						||
func hasSGX(available, lc bool) (rval SGXSupport) {
 | 
						||
	rval.Available = available
 | 
						||
 | 
						||
	if !available {
 | 
						||
		return
 | 
						||
	}
 | 
						||
 | 
						||
	rval.LaunchControl = lc
 | 
						||
 | 
						||
	a, _, _, d := cpuidex(0x12, 0)
 | 
						||
	rval.SGX1Supported = a&0x01 != 0
 | 
						||
	rval.SGX2Supported = a&0x02 != 0
 | 
						||
	rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF)     // pow 2
 | 
						||
	rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
 | 
						||
	rval.EPCSections = make([]SGXEPCSection, 0)
 | 
						||
 | 
						||
	for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
 | 
						||
		eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
 | 
						||
		leafType := eax & 0xf
 | 
						||
 | 
						||
		if leafType == 0 {
 | 
						||
			// Invalid subleaf, stop iterating
 | 
						||
			break
 | 
						||
		} else if leafType == 1 {
 | 
						||
			// EPC Section subleaf
 | 
						||
			baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
 | 
						||
			size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
 | 
						||
 | 
						||
			section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
 | 
						||
			rval.EPCSections = append(rval.EPCSections, section)
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	return
 | 
						||
}
 | 
						||
 | 
						||
func support() Flags {
 | 
						||
	mfi := maxFunctionID()
 | 
						||
	vend, _ := vendorID()
 | 
						||
	if mfi < 0x1 {
 | 
						||
		return 0
 | 
						||
	}
 | 
						||
	rval := uint64(0)
 | 
						||
	_, _, c, d := cpuid(1)
 | 
						||
	if (d & (1 << 15)) != 0 {
 | 
						||
		rval |= CMOV
 | 
						||
	}
 | 
						||
	if (d & (1 << 23)) != 0 {
 | 
						||
		rval |= MMX
 | 
						||
	}
 | 
						||
	if (d & (1 << 25)) != 0 {
 | 
						||
		rval |= MMXEXT
 | 
						||
	}
 | 
						||
	if (d & (1 << 25)) != 0 {
 | 
						||
		rval |= SSE
 | 
						||
	}
 | 
						||
	if (d & (1 << 26)) != 0 {
 | 
						||
		rval |= SSE2
 | 
						||
	}
 | 
						||
	if (c & 1) != 0 {
 | 
						||
		rval |= SSE3
 | 
						||
	}
 | 
						||
	if (c & (1 << 5)) != 0 {
 | 
						||
		rval |= VMX
 | 
						||
	}
 | 
						||
	if (c & 0x00000200) != 0 {
 | 
						||
		rval |= SSSE3
 | 
						||
	}
 | 
						||
	if (c & 0x00080000) != 0 {
 | 
						||
		rval |= SSE4
 | 
						||
	}
 | 
						||
	if (c & 0x00100000) != 0 {
 | 
						||
		rval |= SSE42
 | 
						||
	}
 | 
						||
	if (c & (1 << 25)) != 0 {
 | 
						||
		rval |= AESNI
 | 
						||
	}
 | 
						||
	if (c & (1 << 1)) != 0 {
 | 
						||
		rval |= CLMUL
 | 
						||
	}
 | 
						||
	if c&(1<<23) != 0 {
 | 
						||
		rval |= POPCNT
 | 
						||
	}
 | 
						||
	if c&(1<<30) != 0 {
 | 
						||
		rval |= RDRAND
 | 
						||
	}
 | 
						||
	if c&(1<<29) != 0 {
 | 
						||
		rval |= F16C
 | 
						||
	}
 | 
						||
	if c&(1<<13) != 0 {
 | 
						||
		rval |= CX16
 | 
						||
	}
 | 
						||
	if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
 | 
						||
		if threadsPerCore() > 1 {
 | 
						||
			rval |= HTT
 | 
						||
		}
 | 
						||
	}
 | 
						||
	if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
 | 
						||
		if threadsPerCore() > 1 {
 | 
						||
			rval |= HTT
 | 
						||
		}
 | 
						||
	}
 | 
						||
	// Check XGETBV, OXSAVE and AVX bits
 | 
						||
	if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
 | 
						||
		// Check for OS support
 | 
						||
		eax, _ := xgetbv(0)
 | 
						||
		if (eax & 0x6) == 0x6 {
 | 
						||
			rval |= AVX
 | 
						||
			if (c & 0x00001000) != 0 {
 | 
						||
				rval |= FMA3
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
 | 
						||
	if mfi >= 7 {
 | 
						||
		_, ebx, ecx, edx := cpuidex(7, 0)
 | 
						||
		eax1, _, _, _ := cpuidex(7, 1)
 | 
						||
		if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
 | 
						||
			rval |= AVX2
 | 
						||
		}
 | 
						||
		if (ebx & 0x00000008) != 0 {
 | 
						||
			rval |= BMI1
 | 
						||
			if (ebx & 0x00000100) != 0 {
 | 
						||
				rval |= BMI2
 | 
						||
			}
 | 
						||
		}
 | 
						||
		if ebx&(1<<2) != 0 {
 | 
						||
			rval |= SGX
 | 
						||
		}
 | 
						||
		if ebx&(1<<4) != 0 {
 | 
						||
			rval |= HLE
 | 
						||
		}
 | 
						||
		if ebx&(1<<9) != 0 {
 | 
						||
			rval |= ERMS
 | 
						||
		}
 | 
						||
		if ebx&(1<<11) != 0 {
 | 
						||
			rval |= RTM
 | 
						||
		}
 | 
						||
		if ebx&(1<<14) != 0 {
 | 
						||
			rval |= MPX
 | 
						||
		}
 | 
						||
		if ebx&(1<<18) != 0 {
 | 
						||
			rval |= RDSEED
 | 
						||
		}
 | 
						||
		if ebx&(1<<19) != 0 {
 | 
						||
			rval |= ADX
 | 
						||
		}
 | 
						||
		if ebx&(1<<29) != 0 {
 | 
						||
			rval |= SHA
 | 
						||
		}
 | 
						||
		if edx&(1<<26) != 0 {
 | 
						||
			rval |= IBPB
 | 
						||
		}
 | 
						||
		if ecx&(1<<30) != 0 {
 | 
						||
			rval |= SGXLC
 | 
						||
		}
 | 
						||
		if edx&(1<<27) != 0 {
 | 
						||
			rval |= STIBP
 | 
						||
		}
 | 
						||
 | 
						||
		// Only detect AVX-512 features if XGETBV is supported
 | 
						||
		if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
 | 
						||
			// Check for OS support
 | 
						||
			eax, _ := xgetbv(0)
 | 
						||
 | 
						||
			// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
 | 
						||
			// ZMM16-ZMM31 state are enabled by OS)
 | 
						||
			/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
 | 
						||
			if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
 | 
						||
				if ebx&(1<<16) != 0 {
 | 
						||
					rval |= AVX512F
 | 
						||
				}
 | 
						||
				if ebx&(1<<17) != 0 {
 | 
						||
					rval |= AVX512DQ
 | 
						||
				}
 | 
						||
				if ebx&(1<<21) != 0 {
 | 
						||
					rval |= AVX512IFMA
 | 
						||
				}
 | 
						||
				if ebx&(1<<26) != 0 {
 | 
						||
					rval |= AVX512PF
 | 
						||
				}
 | 
						||
				if ebx&(1<<27) != 0 {
 | 
						||
					rval |= AVX512ER
 | 
						||
				}
 | 
						||
				if ebx&(1<<28) != 0 {
 | 
						||
					rval |= AVX512CD
 | 
						||
				}
 | 
						||
				if ebx&(1<<30) != 0 {
 | 
						||
					rval |= AVX512BW
 | 
						||
				}
 | 
						||
				if ebx&(1<<31) != 0 {
 | 
						||
					rval |= AVX512VL
 | 
						||
				}
 | 
						||
				// ecx
 | 
						||
				if ecx&(1<<1) != 0 {
 | 
						||
					rval |= AVX512VBMI
 | 
						||
				}
 | 
						||
				if ecx&(1<<6) != 0 {
 | 
						||
					rval |= AVX512VBMI2
 | 
						||
				}
 | 
						||
				if ecx&(1<<8) != 0 {
 | 
						||
					rval |= GFNI
 | 
						||
				}
 | 
						||
				if ecx&(1<<9) != 0 {
 | 
						||
					rval |= VAES
 | 
						||
				}
 | 
						||
				if ecx&(1<<10) != 0 {
 | 
						||
					rval |= VPCLMULQDQ
 | 
						||
				}
 | 
						||
				if ecx&(1<<11) != 0 {
 | 
						||
					rval |= AVX512VNNI
 | 
						||
				}
 | 
						||
				if ecx&(1<<12) != 0 {
 | 
						||
					rval |= AVX512BITALG
 | 
						||
				}
 | 
						||
				if ecx&(1<<14) != 0 {
 | 
						||
					rval |= AVX512VPOPCNTDQ
 | 
						||
				}
 | 
						||
				// edx
 | 
						||
				if edx&(1<<8) != 0 {
 | 
						||
					rval |= AVX512VP2INTERSECT
 | 
						||
				}
 | 
						||
				// cpuid eax 07h,ecx=1
 | 
						||
				if eax1&(1<<5) != 0 {
 | 
						||
					rval |= AVX512BF16
 | 
						||
				}
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
 | 
						||
	if maxExtendedFunction() >= 0x80000001 {
 | 
						||
		_, _, c, d := cpuid(0x80000001)
 | 
						||
		if (c & (1 << 5)) != 0 {
 | 
						||
			rval |= LZCNT
 | 
						||
			rval |= POPCNT
 | 
						||
		}
 | 
						||
		if (d & (1 << 31)) != 0 {
 | 
						||
			rval |= AMD3DNOW
 | 
						||
		}
 | 
						||
		if (d & (1 << 30)) != 0 {
 | 
						||
			rval |= AMD3DNOWEXT
 | 
						||
		}
 | 
						||
		if (d & (1 << 23)) != 0 {
 | 
						||
			rval |= MMX
 | 
						||
		}
 | 
						||
		if (d & (1 << 22)) != 0 {
 | 
						||
			rval |= MMXEXT
 | 
						||
		}
 | 
						||
		if (c & (1 << 6)) != 0 {
 | 
						||
			rval |= SSE4A
 | 
						||
		}
 | 
						||
		if d&(1<<20) != 0 {
 | 
						||
			rval |= NX
 | 
						||
		}
 | 
						||
		if d&(1<<27) != 0 {
 | 
						||
			rval |= RDTSCP
 | 
						||
		}
 | 
						||
 | 
						||
		/* Allow for selectively disabling SSE2 functions on AMD processors
 | 
						||
		   with SSE2 support but not SSE4a. This includes Athlon64, some
 | 
						||
		   Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
 | 
						||
		   than SSE2 often enough to utilize this special-case flag.
 | 
						||
		   AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
 | 
						||
		   so that SSE2 is used unless explicitly disabled by checking
 | 
						||
		   AV_CPU_FLAG_SSE2SLOW. */
 | 
						||
		if vend != Intel &&
 | 
						||
			rval&SSE2 != 0 && (c&0x00000040) == 0 {
 | 
						||
			rval |= SSE2SLOW
 | 
						||
		}
 | 
						||
 | 
						||
		/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
 | 
						||
		 * used unless the OS has AVX support. */
 | 
						||
		if (rval & AVX) != 0 {
 | 
						||
			if (c & 0x00000800) != 0 {
 | 
						||
				rval |= XOP
 | 
						||
			}
 | 
						||
			if (c & 0x00010000) != 0 {
 | 
						||
				rval |= FMA4
 | 
						||
			}
 | 
						||
		}
 | 
						||
 | 
						||
		if vend == Intel {
 | 
						||
			family, model := familyModel()
 | 
						||
			if family == 6 && (model == 9 || model == 13 || model == 14) {
 | 
						||
				/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
 | 
						||
				 * 6/14 (core1 "yonah") theoretically support sse2, but it's
 | 
						||
				 * usually slower than mmx. */
 | 
						||
				if (rval & SSE2) != 0 {
 | 
						||
					rval |= SSE2SLOW
 | 
						||
				}
 | 
						||
				if (rval & SSE3) != 0 {
 | 
						||
					rval |= SSE3SLOW
 | 
						||
				}
 | 
						||
			}
 | 
						||
			/* The Atom processor has SSSE3 support, which is useful in many cases,
 | 
						||
			 * but sometimes the SSSE3 version is slower than the SSE2 equivalent
 | 
						||
			 * on the Atom, but is generally faster on other processors supporting
 | 
						||
			 * SSSE3. This flag allows for selectively disabling certain SSSE3
 | 
						||
			 * functions on the Atom. */
 | 
						||
			if family == 6 && model == 28 {
 | 
						||
				rval |= ATOM
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return Flags(rval)
 | 
						||
}
 | 
						||
 | 
						||
func valAsString(values ...uint32) []byte {
 | 
						||
	r := make([]byte, 4*len(values))
 | 
						||
	for i, v := range values {
 | 
						||
		dst := r[i*4:]
 | 
						||
		dst[0] = byte(v & 0xff)
 | 
						||
		dst[1] = byte((v >> 8) & 0xff)
 | 
						||
		dst[2] = byte((v >> 16) & 0xff)
 | 
						||
		dst[3] = byte((v >> 24) & 0xff)
 | 
						||
		switch {
 | 
						||
		case dst[0] == 0:
 | 
						||
			return r[:i*4]
 | 
						||
		case dst[1] == 0:
 | 
						||
			return r[:i*4+1]
 | 
						||
		case dst[2] == 0:
 | 
						||
			return r[:i*4+2]
 | 
						||
		case dst[3] == 0:
 | 
						||
			return r[:i*4+3]
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return r
 | 
						||
}
 | 
						||
 | 
						||
// Single-precision and double-precision floating point
 | 
						||
func (c CPUInfo) ArmFP() bool {
 | 
						||
	return c.Arm&FP != 0
 | 
						||
}
 | 
						||
 | 
						||
// Advanced SIMD
 | 
						||
func (c CPUInfo) ArmASIMD() bool {
 | 
						||
	return c.Arm&ASIMD != 0
 | 
						||
}
 | 
						||
 | 
						||
// Generic timer
 | 
						||
func (c CPUInfo) ArmEVTSTRM() bool {
 | 
						||
	return c.Arm&EVTSTRM != 0
 | 
						||
}
 | 
						||
 | 
						||
// AES instructions
 | 
						||
func (c CPUInfo) ArmAES() bool {
 | 
						||
	return c.Arm&AES != 0
 | 
						||
}
 | 
						||
 | 
						||
// Polynomial Multiply instructions (PMULL/PMULL2)
 | 
						||
func (c CPUInfo) ArmPMULL() bool {
 | 
						||
	return c.Arm&PMULL != 0
 | 
						||
}
 | 
						||
 | 
						||
// SHA-1 instructions (SHA1C, etc)
 | 
						||
func (c CPUInfo) ArmSHA1() bool {
 | 
						||
	return c.Arm&SHA1 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SHA-2 instructions (SHA256H, etc)
 | 
						||
func (c CPUInfo) ArmSHA2() bool {
 | 
						||
	return c.Arm&SHA2 != 0
 | 
						||
}
 | 
						||
 | 
						||
// CRC32/CRC32C instructions
 | 
						||
func (c CPUInfo) ArmCRC32() bool {
 | 
						||
	return c.Arm&CRC32 != 0
 | 
						||
}
 | 
						||
 | 
						||
// Large System Extensions (LSE)
 | 
						||
func (c CPUInfo) ArmATOMICS() bool {
 | 
						||
	return c.Arm&ATOMICS != 0
 | 
						||
}
 | 
						||
 | 
						||
// Half-precision floating point
 | 
						||
func (c CPUInfo) ArmFPHP() bool {
 | 
						||
	return c.Arm&FPHP != 0
 | 
						||
}
 | 
						||
 | 
						||
// Advanced SIMD half-precision floating point
 | 
						||
func (c CPUInfo) ArmASIMDHP() bool {
 | 
						||
	return c.Arm&ASIMDHP != 0
 | 
						||
}
 | 
						||
 | 
						||
// Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
 | 
						||
func (c CPUInfo) ArmASIMDRDM() bool {
 | 
						||
	return c.Arm&ASIMDRDM != 0
 | 
						||
}
 | 
						||
 | 
						||
// Javascript-style double->int convert (FJCVTZS)
 | 
						||
func (c CPUInfo) ArmJSCVT() bool {
 | 
						||
	return c.Arm&JSCVT != 0
 | 
						||
}
 | 
						||
 | 
						||
// Floatin point complex number addition and multiplication
 | 
						||
func (c CPUInfo) ArmFCMA() bool {
 | 
						||
	return c.Arm&FCMA != 0
 | 
						||
}
 | 
						||
 | 
						||
// Weaker release consistency (LDAPR, etc)
 | 
						||
func (c CPUInfo) ArmLRCPC() bool {
 | 
						||
	return c.Arm&LRCPC != 0
 | 
						||
}
 | 
						||
 | 
						||
// Data cache clean to Point of Persistence (DC CVAP)
 | 
						||
func (c CPUInfo) ArmDCPOP() bool {
 | 
						||
	return c.Arm&DCPOP != 0
 | 
						||
}
 | 
						||
 | 
						||
// SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
 | 
						||
func (c CPUInfo) ArmSHA3() bool {
 | 
						||
	return c.Arm&SHA3 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SM3 instructions
 | 
						||
func (c CPUInfo) ArmSM3() bool {
 | 
						||
	return c.Arm&SM3 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SM4 instructions
 | 
						||
func (c CPUInfo) ArmSM4() bool {
 | 
						||
	return c.Arm&SM4 != 0
 | 
						||
}
 | 
						||
 | 
						||
// SIMD Dot Product
 | 
						||
func (c CPUInfo) ArmASIMDDP() bool {
 | 
						||
	return c.Arm&ASIMDDP != 0
 | 
						||
}
 | 
						||
 | 
						||
// SHA512 instructions
 | 
						||
func (c CPUInfo) ArmSHA512() bool {
 | 
						||
	return c.Arm&SHA512 != 0
 | 
						||
}
 | 
						||
 | 
						||
// Scalable Vector Extension
 | 
						||
func (c CPUInfo) ArmSVE() bool {
 | 
						||
	return c.Arm&SVE != 0
 | 
						||
}
 | 
						||
 | 
						||
// Generic Pointer Authentication
 | 
						||
func (c CPUInfo) ArmGPA() bool {
 | 
						||
	return c.Arm&GPA != 0
 | 
						||
}
 |