Files
mayfly-go/server/internal/db/dbm/postgres/dialect.go

437 lines
14 KiB
Go
Raw Normal View History

package postgres
2022-10-15 17:38:34 +08:00
import (
2022-12-22 18:41:34 +08:00
"database/sql"
2022-10-15 17:38:34 +08:00
"fmt"
"mayfly-go/internal/db/dbm/dbi"
"mayfly-go/pkg/errorx"
"mayfly-go/pkg/utils/anyx"
"mayfly-go/pkg/utils/collx"
"regexp"
2022-12-22 18:41:34 +08:00
"strings"
"time"
2022-10-15 17:38:34 +08:00
)
const (
2023-05-24 12:32:17 +08:00
PGSQL_META_FILE = "metasql/pgsql_meta.sql"
PGSQL_DB_SCHEMAS = "PGSQL_DB_SCHEMAS"
2023-05-24 12:32:17 +08:00
PGSQL_TABLE_INFO_KEY = "PGSQL_TABLE_INFO"
PGSQL_INDEX_INFO_KEY = "PGSQL_INDEX_INFO"
PGSQL_COLUMN_MA_KEY = "PGSQL_COLUMN_MA"
PGSQL_TABLE_DDL_KEY = "PGSQL_TABLE_DDL_FUNC"
2022-10-15 17:38:34 +08:00
)
2023-11-26 21:21:35 +08:00
type PgsqlDialect struct {
dc *dbi.DbConn
2022-10-15 17:38:34 +08:00
}
func (pd *PgsqlDialect) GetDbServer() (*dbi.DbServer, error) {
_, res, err := pd.dc.Query("SELECT version() as server_version")
2023-12-20 17:29:16 +08:00
if err != nil {
return nil, err
}
ds := &dbi.DbServer{
2023-12-20 17:29:16 +08:00
Version: anyx.ConvString(res[0]["server_version"]),
}
return ds, nil
}
func (pd *PgsqlDialect) GetDbNames() ([]string, error) {
_, res, err := pd.dc.Query("SELECT datname AS dbname FROM pg_database WHERE datistemplate = false AND has_database_privilege(datname, 'CONNECT')")
2023-11-26 21:21:35 +08:00
if err != nil {
return nil, err
}
databases := make([]string, 0)
for _, re := range res {
databases = append(databases, anyx.ConvString(re["dbname"]))
}
return databases, nil
}
2022-10-15 17:38:34 +08:00
// 获取表基础元信息, 如表名等
func (pd *PgsqlDialect) GetTables() ([]dbi.Table, error) {
_, res, err := pd.dc.Query(dbi.GetLocalSql(PGSQL_META_FILE, PGSQL_TABLE_INFO_KEY))
if err != nil {
return nil, err
}
2023-05-24 12:32:17 +08:00
tables := make([]dbi.Table, 0)
2023-05-24 12:32:17 +08:00
for _, re := range res {
tables = append(tables, dbi.Table{
2023-05-24 12:32:17 +08:00
TableName: re["tableName"].(string),
TableComment: anyx.ConvString(re["tableComment"]),
CreateTime: anyx.ConvString(re["createTime"]),
TableRows: anyx.ConvInt(re["tableRows"]),
DataLength: anyx.ConvInt64(re["dataLength"]),
IndexLength: anyx.ConvInt64(re["indexLength"]),
2023-05-24 12:32:17 +08:00
})
}
return tables, nil
2022-10-15 17:38:34 +08:00
}
// 获取列元信息, 如列名等
func (pd *PgsqlDialect) GetColumns(tableNames ...string) ([]dbi.Column, error) {
dbType := pd.dc.Info.Type
tableName := strings.Join(collx.ArrayMap[string, string](tableNames, func(val string) string {
return fmt.Sprintf("'%s'", dbType.RemoveQuote(val))
}), ",")
2023-05-24 12:32:17 +08:00
_, res, err := pd.dc.Query(fmt.Sprintf(dbi.GetLocalSql(PGSQL_META_FILE, PGSQL_COLUMN_MA_KEY), tableName))
if err != nil {
return nil, err
}
columns := make([]dbi.Column, 0)
2023-05-24 12:32:17 +08:00
for _, re := range res {
columns = append(columns, dbi.Column{
TableName: anyx.ConvString(re["tableName"]),
ColumnName: anyx.ConvString(re["columnName"]),
ColumnType: anyx.ConvString(re["columnType"]),
ColumnComment: anyx.ConvString(re["columnComment"]),
Nullable: anyx.ConvString(re["nullable"]),
IsPrimaryKey: anyx.ConvInt(re["isPrimaryKey"]) == 1,
IsIdentity: anyx.ConvInt(re["isIdentity"]) == 1,
ColumnDefault: anyx.ConvString(re["columnDefault"]),
2023-11-23 10:36:20 +08:00
NumScale: anyx.ConvString(re["numScale"]),
2023-05-24 12:32:17 +08:00
})
}
return columns, nil
2022-10-15 17:38:34 +08:00
}
func (pd *PgsqlDialect) GetPrimaryKey(tablename string) (string, error) {
columns, err := pd.GetColumns(tablename)
if err != nil {
return "", err
}
if len(columns) == 0 {
return "", errorx.NewBiz("[%s] 表不存在", tablename)
}
2022-11-23 20:48:37 +08:00
for _, v := range columns {
if v.IsPrimaryKey {
return v.ColumnName, nil
2022-11-23 20:48:37 +08:00
}
}
return columns[0].ColumnName, nil
2022-10-15 17:38:34 +08:00
}
// 获取表索引信息
func (pd *PgsqlDialect) GetTableIndex(tableName string) ([]dbi.Index, error) {
_, res, err := pd.dc.Query(fmt.Sprintf(dbi.GetLocalSql(PGSQL_META_FILE, PGSQL_INDEX_INFO_KEY), tableName))
if err != nil {
return nil, err
}
indexs := make([]dbi.Index, 0)
2023-05-24 12:32:17 +08:00
for _, re := range res {
indexs = append(indexs, dbi.Index{
IndexName: anyx.ConvString(re["indexName"]),
ColumnName: anyx.ConvString(re["columnName"]),
2023-11-23 10:36:20 +08:00
IndexType: anyx.ConvString(re["IndexType"]),
IndexComment: anyx.ConvString(re["indexComment"]),
IsUnique: anyx.ConvInt(re["isUnique"]) == 1,
SeqInIndex: anyx.ConvInt(re["seqInIndex"]),
2023-05-24 12:32:17 +08:00
})
}
2023-11-23 10:36:20 +08:00
// 把查询结果以索引名分组,索引字段以逗号连接
result := make([]dbi.Index, 0)
2023-11-23 10:36:20 +08:00
key := ""
for _, v := range indexs {
// 当前的索引名
in := v.IndexName
if key == in {
// 索引字段已根据名称和顺序排序,故取最后一个即可
i := len(result) - 1
// 同索引字段以逗号连接
result[i].ColumnName = result[i].ColumnName + "," + v.ColumnName
} else {
key = in
result = append(result, v)
}
}
return result, nil
2022-10-15 17:38:34 +08:00
}
// 获取建表ddl
func (pd *PgsqlDialect) GetTableDDL(tableName string) (string, error) {
_, err := pd.dc.Exec(dbi.GetLocalSql(PGSQL_META_FILE, PGSQL_TABLE_DDL_KEY))
if err != nil {
return "", err
}
2023-05-24 12:32:17 +08:00
ddlSql := fmt.Sprintf("select showcreatetable('%s','%s') as sql", pd.currentSchema(), tableName)
_, res, err := pd.dc.Query(ddlSql)
if err != nil {
return "", err
}
2023-05-24 12:32:17 +08:00
return res[0]["sql"].(string), nil
2022-10-15 17:38:34 +08:00
}
2022-12-17 22:24:21 +08:00
// 获取pgsql当前连接的库可访问的schemaNames
func (pd *PgsqlDialect) GetSchemas() ([]string, error) {
sql := dbi.GetLocalSql(PGSQL_META_FILE, PGSQL_DB_SCHEMAS)
_, res, err := pd.dc.Query(sql)
if err != nil {
return nil, err
}
schemaNames := make([]string, 0)
for _, re := range res {
schemaNames = append(schemaNames, anyx.ConvString(re["schemaName"]))
}
return schemaNames, nil
}
// GetDbProgram 获取数据库程序模块,用于数据库备份与恢复
func (pd *PgsqlDialect) GetDbProgram() (dbi.DbProgram, error) {
return nil, fmt.Errorf("该数据库类型不支持数据库备份与恢复: %v", pd.dc.Info.Type)
}
func (pd *PgsqlDialect) BatchInsert(tx *sql.Tx, tableName string, columns []string, values [][]any, duplicateStrategy int) (int64, error) {
// 执行批量insert sql跟mysql一样 pg或高斯支持批量insert语法
// insert into table_name (column1, column2, ...) values (value1, value2, ...), (value1, value2, ...), ...
// 把二维数组转为一维数组
var args []any
for _, v := range values {
args = append(args, v...)
}
2024-01-06 22:36:50 +08:00
2024-01-08 11:24:37 +08:00
// 构建占位符字符串 "($1, $2, $3), ($4, $5, $6), ..." 用于指定参数
var placeholders []string
for i := 0; i < len(args); i += len(columns) {
var placeholder []string
for j := 0; j < len(columns); j++ {
placeholder = append(placeholder, fmt.Sprintf("$%d", i+j+1))
}
placeholders = append(placeholders, "("+strings.Join(placeholder, ", ")+")")
}
// 根据冲突策略生成后缀
suffix := ""
if pd.dc.Info.Type == dbi.DbTypeGauss {
// 高斯db使用ON DUPLICATE KEY UPDATE 语法参考 https://support.huaweicloud.com/distributed-devg-v3-gaussdb/gaussdb-12-0607.html#ZH-CN_TOPIC_0000001633948138
suffix = pd.gaussOnDuplicateStrategySql(duplicateStrategy, tableName, columns)
} else {
// pgsql 默认使用 on conflict 语法参考 http://www.postgres.cn/docs/12/sql-insert.html
// vastbase语法参考 https://docs.vastdata.com.cn/zh/docs/VastbaseE100Ver3.0.0/doc/SQL%E8%AF%AD%E6%B3%95/INSERT.html
// kingbase语法参考 https://help.kingbase.com.cn/v8/development/sql-plsql/sql/SQL_Statements_9.html#insert
suffix = pd.pgsqlOnDuplicateStrategySql(duplicateStrategy, tableName, columns)
}
sqlStr := fmt.Sprintf("insert into %s (%s) values %s %s", pd.dc.Info.Type.QuoteIdentifier(tableName), strings.Join(columns, ","), strings.Join(placeholders, ", "), suffix)
2024-01-08 11:24:37 +08:00
// 执行批量insert sql
return pd.dc.TxExec(tx, sqlStr, args...)
}
// pgsql默认唯一键冲突策略
func (pd PgsqlDialect) pgsqlOnDuplicateStrategySql(duplicateStrategy int, tableName string, columns []string) string {
suffix := ""
if duplicateStrategy == dbi.DuplicateStrategyIgnore {
suffix = " \n on conflict do nothing"
} else if duplicateStrategy == dbi.DuplicateStrategyUpdate {
// 生成 on conflict () do update set column1 = excluded.column1, column2 = excluded.column2, ...
var updateColumns []string
for _, col := range columns {
updateColumns = append(updateColumns, fmt.Sprintf("%s = excluded.%s", col, col))
}
// 查询唯一键名,拼接冲突sql
_, keyRes, _ := pd.dc.Query("SELECT constraint_name FROM information_schema.table_constraints WHERE constraint_schema = $1 AND table_name = $2 AND constraint_type in ('PRIMARY KEY', 'UNIQUE') ", pd.currentSchema(), tableName)
if len(keyRes) > 0 {
for _, re := range keyRes {
key := anyx.ToString(re["constraint_name"])
if key != "" {
suffix += fmt.Sprintf(" \n on conflict on constraint %s do update set %s \n", key, strings.Join(updateColumns, ", "))
}
}
}
}
return suffix
}
// 高斯db唯一键冲突策略,使用ON DUPLICATE KEY UPDATE 参考https://support.huaweicloud.com/distributed-devg-v3-gaussdb/gaussdb-12-0607.html#ZH-CN_TOPIC_0000001633948138
func (pd PgsqlDialect) gaussOnDuplicateStrategySql(duplicateStrategy int, tableName string, columns []string) string {
suffix := ""
if duplicateStrategy == dbi.DuplicateStrategyIgnore {
suffix = " \n ON DUPLICATE KEY UPDATE NOTHING"
} else if duplicateStrategy == dbi.DuplicateStrategyUpdate {
// 查出表里的唯一键涉及的字段
var uniqueColumns []string
indexs, err := pd.GetTableIndex(tableName)
if err == nil {
for _, index := range indexs {
if index.IsUnique {
cols := strings.Split(index.ColumnName, ",")
for _, col := range cols {
if !collx.ArrayContains(uniqueColumns, strings.ToLower(col)) {
uniqueColumns = append(uniqueColumns, strings.ToLower(col))
}
}
}
}
}
suffix = " \n ON DUPLICATE KEY UPDATE "
for i, col := range columns {
// ON DUPLICATE KEY UPDATE语句不支持更新唯一键字段所以得去掉
if !collx.ArrayContains(uniqueColumns, pd.dc.Info.Type.RemoveQuote(strings.ToLower(col))) {
suffix += fmt.Sprintf("%s = excluded.%s", col, col)
if i < len(columns)-1 {
suffix += ", "
}
}
}
}
return suffix
}
// 从连接信息中获取数据库和schema信息
func (pd *PgsqlDialect) currentSchema() string {
dbName := pd.dc.Info.Database
schema := ""
arr := strings.Split(dbName, "/")
if len(arr) == 2 {
schema = arr[1]
}
return schema
}
func (pd *PgsqlDialect) GetDataConverter() dbi.DataConverter {
return converter
}
var (
// 数字类型
numberRegexp = regexp.MustCompile(`(?i)int|double|float|number|decimal|byte|bit`)
// 日期时间类型
datetimeRegexp = regexp.MustCompile(`(?i)datetime|timestamp`)
// 日期类型
dateRegexp = regexp.MustCompile(`(?i)date`)
// 时间类型
timeRegexp = regexp.MustCompile(`(?i)time`)
converter = new(DataConverter)
)
type DataConverter struct {
}
func (dc *DataConverter) GetDataType(dbColumnType string) dbi.DataType {
if numberRegexp.MatchString(dbColumnType) {
return dbi.DataTypeNumber
}
// 日期时间类型
if datetimeRegexp.MatchString(dbColumnType) {
return dbi.DataTypeDateTime
}
// 日期类型
if dateRegexp.MatchString(dbColumnType) {
return dbi.DataTypeDate
}
// 时间类型
if timeRegexp.MatchString(dbColumnType) {
return dbi.DataTypeTime
}
return dbi.DataTypeString
}
func (dc *DataConverter) FormatData(dbColumnValue any, dataType dbi.DataType) string {
str := fmt.Sprintf("%v", dbColumnValue)
switch dataType {
case dbi.DataTypeDateTime: // "2024-01-02T22:16:28.545377+08:00"
res, _ := time.Parse(time.RFC3339, str)
return res.Format(time.DateTime)
case dbi.DataTypeDate: // "2024-01-02T00:00:00Z"
res, _ := time.Parse(time.RFC3339, str)
return res.Format(time.DateOnly)
case dbi.DataTypeTime: // "0000-01-01T22:16:28.545075+08:00"
res, _ := time.Parse(time.RFC3339, str)
return res.Format(time.TimeOnly)
}
return anyx.ConvString(dbColumnValue)
}
func (dc *DataConverter) ParseData(dbColumnValue any, dataType dbi.DataType) any {
// 如果dataType是datetime而dbColumnValue是string类型则需要转换为time.Time类型
_, ok := dbColumnValue.(string)
if dataType == dbi.DataTypeDateTime && ok {
res, _ := time.Parse(time.RFC3339, anyx.ToString(dbColumnValue))
return res
}
if dataType == dbi.DataTypeDate && ok {
res, _ := time.Parse(time.DateOnly, anyx.ToString(dbColumnValue))
return res
}
if dataType == dbi.DataTypeTime && ok {
res, _ := time.Parse(time.TimeOnly, anyx.ToString(dbColumnValue))
return res
}
return dbColumnValue
}
func (pd *PgsqlDialect) IsGauss() bool {
return strings.Contains(pd.dc.Info.Params, "gauss")
}
func (pd *PgsqlDialect) CopyTable(copy *dbi.DbCopyTable) error {
tableName := copy.TableName
// 生成新表名,为老表明+_copy_时间戳
newTableName := tableName + "_copy_" + time.Now().Format("20060102150405")
// 执行根据旧表创建新表
_, err := pd.dc.Exec(fmt.Sprintf("create table %s (like %s)", newTableName, tableName))
if err != nil {
return err
}
// 复制数据
if copy.CopyData {
go func() {
_, _ = pd.dc.Exec(fmt.Sprintf("insert into %s select * from %s", newTableName, tableName))
}()
}
// 查询旧表的自增字段名 重新设置新表的序列序列器
_, res, err := pd.dc.Query(fmt.Sprintf("select column_name from information_schema.columns where table_name = '%s' and column_default like 'nextval%%'", tableName))
if err != nil {
return err
}
for _, re := range res {
colName := anyx.ConvString(re["column_name"])
if colName != "" {
// 查询自增列当前最大值
_, maxRes, err := pd.dc.Query(fmt.Sprintf("select max(%s) max_val from %s", colName, tableName))
if err != nil {
return err
}
maxVal := anyx.ConvInt(maxRes[0]["max_val"])
// 序列起始值为1或当前最大值+1
if maxVal <= 0 {
maxVal = 1
} else {
maxVal += 1
}
// 之所以不用tableName_colName_seq是因为gauss会自动创建同名的序列且无法修改序列起始值所以直接使用新序列值
newSeqName := fmt.Sprintf("%s_%s_copy_seq", newTableName, colName)
// 创建自增序列,当前最大值为旧表最大值
_, err = pd.dc.Exec(fmt.Sprintf("CREATE SEQUENCE %s START %d INCREMENT 1", newSeqName, maxVal))
if err != nil {
return err
}
// 将新表的自增主键序列与主键列相关联
_, err = pd.dc.Exec(fmt.Sprintf("alter table %s alter column %s set default nextval('%s')", newTableName, colName, newSeqName))
if err != nil {
return err
}
}
}
return err
}