Files
mayfly-go/server/pkg/pool/chan_pool.go
2025-05-29 20:24:48 +08:00

397 lines
8.4 KiB
Go

package pool
import (
"context"
"errors"
"mayfly-go/pkg/logx"
"mayfly-go/pkg/utils/anyx"
"sync"
"sync/atomic"
"time"
)
// chanConn 封装连接及其元数据
type chanConn[T Conn] struct {
conn T
lastActive time.Time // 最后活跃时间
isValid bool // 连接是否有效
}
func (w *chanConn[T]) Ping() error {
if !w.isValid {
return errors.New("connection marked invalid")
}
return w.conn.Ping()
}
func (w *chanConn[T]) Close() error {
w.isValid = false
return w.conn.Close()
}
// ChanPool 连接池结构
type ChanPool[T Conn] struct {
mu sync.RWMutex
factory func() (T, error)
idleConns chan *chanConn[T]
config PoolConfig[T]
currentConns int32
stats PoolStats
closeChan chan struct{} // 用于关闭健康检查 goroutine
closed bool // 关闭状态标识
}
// PoolStats 统计信息
type PoolStats struct {
TotalConns int32 // 总连接数
IdleConns int32 // 空闲连接数
ActiveConns int32 // 活跃连接数
WaitCount int64 // 等待连接次数
}
func NewChannelPool[T Conn](factory func() (T, error), opts ...Option[T]) *ChanPool[T] {
// 1. 初始化配置(使用默认值 + Option 覆盖)
config := PoolConfig[T]{
MaxConns: 5,
IdleTimeout: 60 * time.Minute,
WaitTimeout: 10 * time.Second,
HealthCheckInterval: 10 * time.Minute,
}
for _, opt := range opts {
opt(&config)
}
// 2. 创建连接池
p := &ChanPool[T]{
factory: factory,
idleConns: make(chan *chanConn[T], config.MaxConns),
config: config,
closeChan: make(chan struct{}),
}
// 3. 启动健康检查
go p.healthCheck()
return p
}
func (p *ChanPool[T]) Get(ctx context.Context, opts ...GetOption) (T, error) {
connChan := make(chan T, 1)
errChan := make(chan error, 1)
options := defaultGetOptions // 默认更新 lastActive
for _, apply := range opts {
apply(&options)
}
go func() {
conn, err := p.get(options)
if err != nil {
errChan <- err
} else {
connChan <- conn
}
}()
var zero T
select {
case <-ctx.Done():
return zero, ctx.Err()
case err := <-errChan:
return zero, err
case conn := <-connChan:
// 启动监控协程
go func() {
<-ctx.Done()
// 上下文被取消后,将连接放回连接池
if err := p.Put(conn); err != nil {
logx.Errorf("Failed to return leaked connection: %v", err)
conn.Close()
atomic.AddInt32(&p.currentConns, -1)
}
}()
return conn, nil
}
}
func (p *ChanPool[T]) get(opts getOptions) (T, error) {
var zero T
// 检查连接池是否已关闭
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return zero, ErrPoolClosed
}
p.mu.RUnlock()
// 优先从 channel 获取空闲连接(无锁)
select {
case wrapper := <-p.idleConns:
atomic.AddInt32(&p.stats.IdleConns, -1)
atomic.AddInt32(&p.stats.ActiveConns, 1)
if opts.updateLastActive {
wrapper.lastActive = time.Now()
}
return wrapper.conn, nil
default:
if !opts.newConn {
return zero, ErrNoAvailableConn
}
return p.createConn()
}
}
func (p *ChanPool[T]) createConn() (T, error) {
var zero T
// 使用CAS保证原子性
for {
current := atomic.LoadInt32(&p.currentConns)
if current >= int32(p.config.MaxConns) {
if p.config.WaitTimeout > 0 {
return p.waitForConn()
}
return zero, errors.New("connection pool exhausted")
}
if atomic.CompareAndSwapInt32(&p.currentConns, current, current+1) {
break
}
}
// 直接创建新连接
conn, err := p.factory()
if err != nil {
atomic.AddInt32(&p.currentConns, -1)
return zero, err
}
// 更新状态
atomic.AddInt32(&p.stats.ActiveConns, 1)
return conn, nil
}
// 新增等待连接方法
func (p *ChanPool[T]) waitForConn() (T, error) {
var zero T
timeout := time.NewTimer(p.config.WaitTimeout)
defer timeout.Stop()
for {
select {
case wrapper := <-p.idleConns:
if wrapper.isValid && wrapper.Ping() == nil {
atomic.AddInt32(&p.stats.IdleConns, -1)
atomic.AddInt32(&p.stats.ActiveConns, 1)
wrapper.lastActive = time.Now()
return wrapper.conn, nil
}
wrapper.Close()
atomic.AddInt32(&p.currentConns, -1)
case <-timeout.C:
atomic.AddInt64(&p.stats.WaitCount, 1)
return zero, errors.New("connection pool wait timeout")
default:
// 非阻塞检查后短暂休眠避免CPU空转
time.Sleep(10 * time.Millisecond)
}
}
}
func (p *ChanPool[T]) Put(conn T) error {
if anyx.IsBlank(conn) {
return nil
}
// 检查连接池是否已关闭
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return conn.Close()
}
p.mu.RUnlock()
// 快速路径
select {
case p.idleConns <- &chanConn[T]{conn: conn, lastActive: time.Now(), isValid: true}:
atomic.AddInt32(&p.stats.IdleConns, 1)
atomic.AddInt32(&p.stats.ActiveConns, -1)
return nil
default:
}
// 慢速路径
p.mu.Lock()
defer p.mu.Unlock()
// 再次检查是否已关闭
if p.closed {
return conn.Close()
}
// 检查是否超过最大连接数
if atomic.LoadInt32(&p.currentConns) > int32(p.config.MaxConns) {
conn.Close()
atomic.AddInt32(&p.currentConns, -1)
} else {
// 直接放入空闲队列
select {
case p.idleConns <- &chanConn[T]{conn: conn, lastActive: time.Now(), isValid: true}:
default:
conn.Close()
atomic.AddInt32(&p.currentConns, -1)
}
}
atomic.AddInt32(&p.stats.ActiveConns, -1)
return nil
}
func (p *ChanPool[T]) Close() {
p.mu.Lock()
if p.closed {
p.mu.Unlock()
return
}
p.closed = true
// 1. 停止健康检查
close(p.closeChan)
// 2. 临时转移空闲连接
idle := make([]*chanConn[T], 0, len(p.idleConns))
for len(p.idleConns) > 0 {
idle = append(idle, <-p.idleConns)
}
close(p.idleConns) // 安全关闭通道
p.mu.Unlock() // 提前释放锁,避免阻塞其他操作
// 3. 关闭所有连接(无需持有锁)
for _, wrapper := range idle {
wrapper.Close()
}
// 4. 触发关闭回调
if p.config.OnPoolClose != nil {
p.config.OnPoolClose()
}
}
func (p *ChanPool[T]) healthCheck() {
ticker := time.NewTicker(p.config.HealthCheckInterval)
defer ticker.Stop()
for {
select {
case <-ticker.C:
p.checkIdleConns()
case <-p.closeChan:
return
}
}
}
func (p *ChanPool[T]) checkIdleConns() {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return
}
idle := make([]*chanConn[T], 0, len(p.idleConns))
for len(p.idleConns) > 0 {
idle = append(idle, <-p.idleConns)
}
now := time.Now()
for _, wrapper := range idle {
if now.Sub(wrapper.lastActive) > p.config.IdleTimeout || wrapper.Ping() != nil {
wrapper.Close()
atomic.AddInt32(&p.currentConns, -1)
} else {
select {
case p.idleConns <- wrapper:
default:
wrapper.Close()
atomic.AddInt32(&p.currentConns, -1)
}
}
}
}
func (p *ChanPool[T]) Resize(newMaxConns int) {
p.mu.Lock()
defer p.mu.Unlock()
oldMax := p.config.MaxConns
p.config.MaxConns = newMaxConns
// 缩小连接池:关闭多余的空闲连接
if newMaxConns < oldMax {
toClose := oldMax - newMaxConns
closed := 0
// 非阻塞取出待关闭的连接
var wrappers []*chanConn[T]
for len(p.idleConns) > 0 && closed < toClose {
wrappers = append(wrappers, <-p.idleConns)
closed++
}
// 关闭连接并更新计数
for _, wrapper := range wrappers {
wrapper.Close()
atomic.AddInt32(&p.currentConns, -1)
atomic.AddInt32(&p.stats.IdleConns, -1)
}
}
// 重建空闲连接通道(无需迁移连接,因 channel 本身无状态)
p.idleConns = make(chan *chanConn[T], newMaxConns)
}
func (p *ChanPool[T]) CheckLeaks() []T {
p.mu.Lock()
defer p.mu.Unlock()
var leaks []T
now := time.Now()
// 检查所有空闲连接
idle := make([]*chanConn[T], 0, len(p.idleConns))
for len(p.idleConns) > 0 {
idle = append(idle, <-p.idleConns)
}
for _, wrapper := range idle {
// 判定泄漏条件:长期未使用且未被标记为活跃
if now.Sub(wrapper.lastActive) > 10*p.config.IdleTimeout {
leaks = append(leaks, wrapper.conn)
wrapper.Close()
atomic.AddInt32(&p.currentConns, -1)
atomic.AddInt32(&p.stats.IdleConns, -1)
} else {
// 放回空闲池
select {
case p.idleConns <- wrapper:
default:
wrapper.Close()
atomic.AddInt32(&p.currentConns, -1)
}
}
}
return leaks
}
func (p *ChanPool[T]) Stats() PoolStats {
p.mu.RLock()
defer p.mu.RUnlock()
return PoolStats{
TotalConns: atomic.LoadInt32(&p.currentConns),
IdleConns: int32(len(p.idleConns)), // 直接读取通道长度
ActiveConns: atomic.LoadInt32(&p.stats.ActiveConns),
WaitCount: atomic.LoadInt64(&p.stats.WaitCount),
}
}