mirror of
https://gitee.com/dromara/mayfly-go
synced 2025-11-04 00:10:25 +08:00
143 lines
3.3 KiB
Go
143 lines
3.3 KiB
Go
package runner
|
||
|
||
//var (
|
||
// false = errors.New("queue: 队列已满")
|
||
// false = errors.New("queue: 队列为空")
|
||
// false = errors.New("queue: 元素未找到")
|
||
//)
|
||
|
||
// PriorityQueue 是一个基于小顶堆的优先队列
|
||
// 当capacity <= 0时,为无界队列,切片容量会动态扩缩容
|
||
// 当capacity > 0 时,为有界队列,初始化后就固定容量,不会扩缩容
|
||
type PriorityQueue[T any] struct {
|
||
// 用于比较前一个元素是否小于后一个元素
|
||
less Less[T]
|
||
// 队列容量
|
||
capacity int
|
||
// 队列中的元素,为便于计算父子节点的index,0位置留空,根节点从1开始
|
||
data []T
|
||
|
||
zero T
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) Len() int {
|
||
return len(p.data) - 1
|
||
}
|
||
|
||
// Cap 无界队列返回0,有界队列返回创建队列时设置的值
|
||
func (p *PriorityQueue[T]) Cap() int {
|
||
return p.capacity
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) IsBoundless() bool {
|
||
return p.capacity <= 0
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) IsFull() bool {
|
||
return p.capacity > 0 && len(p.data)-1 == p.capacity
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) IsEmpty() bool {
|
||
return len(p.data) < 2
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) Peek(i int) (T, bool) {
|
||
if p.IsEmpty() {
|
||
return p.zero, false
|
||
}
|
||
if i >= p.Len() {
|
||
return p.zero, false
|
||
}
|
||
return p.data[i+1], true
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) Enqueue(t T) bool {
|
||
if p.IsFull() {
|
||
return false
|
||
}
|
||
|
||
p.data = append(p.data, t)
|
||
node, parent := len(p.data)-1, (len(p.data)-1)/2
|
||
for parent > 0 && p.less(p.data[node], p.data[parent]) {
|
||
p.data[parent], p.data[node] = p.data[node], p.data[parent]
|
||
node = parent
|
||
parent = parent / 2
|
||
}
|
||
return true
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) Dequeue() (T, bool) {
|
||
if p.IsEmpty() {
|
||
return p.zero, false
|
||
}
|
||
|
||
pop := p.data[1]
|
||
// 假定说我拿到了堆顶,就是理论上优先级最低的
|
||
// pop 的优先级
|
||
p.data[1] = p.data[len(p.data)-1]
|
||
p.data = p.data[:len(p.data)-1]
|
||
p.shrinkIfNecessary()
|
||
p.heapify(p.data, len(p.data)-1, 1)
|
||
return pop, true
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) shrinkIfNecessary() {
|
||
if !p.IsBoundless() {
|
||
return
|
||
}
|
||
if cap(p.data) > 1024 && len(p.data)*3 < cap(p.data)*2 {
|
||
data := make([]T, len(p.data), cap(p.data)*5/6)
|
||
copy(data, p.data)
|
||
p.data = data
|
||
}
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) heapify(data []T, n, i int) {
|
||
minPos := i
|
||
for {
|
||
if left := i * 2; left <= n && p.less(data[left], data[minPos]) {
|
||
minPos = left
|
||
}
|
||
if right := i*2 + 1; right <= n && p.less(data[right], data[minPos]) {
|
||
minPos = right
|
||
}
|
||
if minPos == i {
|
||
break
|
||
}
|
||
data[i], data[minPos] = data[minPos], data[i]
|
||
i = minPos
|
||
}
|
||
}
|
||
|
||
func (p *PriorityQueue[T]) Remove(i int) (T, bool) {
|
||
if p.IsEmpty() || i >= p.Len() || i < 0 {
|
||
return p.zero, false
|
||
}
|
||
|
||
i += 1
|
||
result := p.data[i]
|
||
last := len(p.data) - 1
|
||
p.data[i] = p.data[last]
|
||
p.data = p.data[:last]
|
||
p.shrinkIfNecessary()
|
||
p.heapify(p.data, len(p.data)-1, i)
|
||
return result, true
|
||
}
|
||
|
||
// NewPriorityQueue 创建优先队列 capacity <= 0 时,为无界队列,否则有有界队列
|
||
func NewPriorityQueue[T any](capacity int, less Less[T]) *PriorityQueue[T] {
|
||
sliceCap := capacity + 1
|
||
if capacity < 1 {
|
||
capacity = 0
|
||
sliceCap = 64
|
||
}
|
||
return &PriorityQueue[T]{
|
||
capacity: capacity,
|
||
data: make([]T, 1, sliceCap),
|
||
less: less,
|
||
}
|
||
}
|
||
|
||
// Less 用于比较两个对象的大小 src < dst, 返回 true,src >= dst, 返回 false
|
||
type Less[T any] func(src T, dst T) bool
|