mirror of
				https://gitee.com/dromara/mayfly-go
				synced 2025-11-04 08:20:25 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			272 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
package postgres
 | 
						||
 | 
						||
import (
 | 
						||
	"database/sql"
 | 
						||
	"fmt"
 | 
						||
	"mayfly-go/internal/db/dbm/dbi"
 | 
						||
	"mayfly-go/pkg/utils/anyx"
 | 
						||
	"mayfly-go/pkg/utils/collx"
 | 
						||
	"regexp"
 | 
						||
	"strings"
 | 
						||
	"time"
 | 
						||
)
 | 
						||
 | 
						||
type PgsqlDialect struct {
 | 
						||
	dc *dbi.DbConn
 | 
						||
}
 | 
						||
 | 
						||
func (pd *PgsqlDialect) GetMetaData() dbi.MetaData {
 | 
						||
	return &PgsqlMetaData{dc: pd.dc}
 | 
						||
}
 | 
						||
 | 
						||
// GetDbProgram 获取数据库程序模块,用于数据库备份与恢复
 | 
						||
func (pd *PgsqlDialect) GetDbProgram() (dbi.DbProgram, error) {
 | 
						||
	return nil, fmt.Errorf("该数据库类型不支持数据库备份与恢复: %v", pd.dc.Info.Type)
 | 
						||
}
 | 
						||
 | 
						||
func (pd *PgsqlDialect) BatchInsert(tx *sql.Tx, tableName string, columns []string, values [][]any, duplicateStrategy int) (int64, error) {
 | 
						||
	// 执行批量insert sql,跟mysql一样  pg或高斯支持批量insert语法
 | 
						||
	// insert into table_name (column1, column2, ...) values (value1, value2, ...), (value1, value2, ...), ...
 | 
						||
 | 
						||
	// 把二维数组转为一维数组
 | 
						||
	var args []any
 | 
						||
	for _, v := range values {
 | 
						||
		args = append(args, v...)
 | 
						||
	}
 | 
						||
 | 
						||
	// 构建占位符字符串 "($1, $2, $3), ($4, $5, $6), ..." 用于指定参数
 | 
						||
	var placeholders []string
 | 
						||
	for i := 0; i < len(args); i += len(columns) {
 | 
						||
		var placeholder []string
 | 
						||
		for j := 0; j < len(columns); j++ {
 | 
						||
			placeholder = append(placeholder, fmt.Sprintf("$%d", i+j+1))
 | 
						||
		}
 | 
						||
		placeholders = append(placeholders, "("+strings.Join(placeholder, ", ")+")")
 | 
						||
	}
 | 
						||
 | 
						||
	// 根据冲突策略生成后缀
 | 
						||
	suffix := ""
 | 
						||
	if pd.dc.Info.Type == dbi.DbTypeGauss {
 | 
						||
		// 高斯db使用ON DUPLICATE KEY UPDATE 语法参考 https://support.huaweicloud.com/distributed-devg-v3-gaussdb/gaussdb-12-0607.html#ZH-CN_TOPIC_0000001633948138
 | 
						||
		suffix = pd.gaussOnDuplicateStrategySql(duplicateStrategy, tableName, columns)
 | 
						||
	} else {
 | 
						||
		// pgsql 默认使用 on conflict 语法参考 http://www.postgres.cn/docs/12/sql-insert.html
 | 
						||
		// vastbase语法参考 https://docs.vastdata.com.cn/zh/docs/VastbaseE100Ver3.0.0/doc/SQL%E8%AF%AD%E6%B3%95/INSERT.html
 | 
						||
		// kingbase语法参考 https://help.kingbase.com.cn/v8/development/sql-plsql/sql/SQL_Statements_9.html#insert
 | 
						||
		suffix = pd.pgsqlOnDuplicateStrategySql(duplicateStrategy, tableName, columns)
 | 
						||
	}
 | 
						||
 | 
						||
	sqlStr := fmt.Sprintf("insert into %s (%s) values %s %s", pd.dc.Info.Type.QuoteIdentifier(tableName), strings.Join(columns, ","), strings.Join(placeholders, ", "), suffix)
 | 
						||
	// 执行批量insert sql
 | 
						||
 | 
						||
	return pd.dc.TxExec(tx, sqlStr, args...)
 | 
						||
}
 | 
						||
 | 
						||
// pgsql默认唯一键冲突策略
 | 
						||
func (pd PgsqlDialect) pgsqlOnDuplicateStrategySql(duplicateStrategy int, tableName string, columns []string) string {
 | 
						||
	suffix := ""
 | 
						||
	if duplicateStrategy == dbi.DuplicateStrategyIgnore {
 | 
						||
		suffix = " \n on conflict do nothing"
 | 
						||
	} else if duplicateStrategy == dbi.DuplicateStrategyUpdate {
 | 
						||
		// 生成 on conflict () do update set column1 = excluded.column1, column2 = excluded.column2, ...
 | 
						||
		var updateColumns []string
 | 
						||
		for _, col := range columns {
 | 
						||
			updateColumns = append(updateColumns, fmt.Sprintf("%s = excluded.%s", col, col))
 | 
						||
		}
 | 
						||
		// 查询唯一键名,拼接冲突sql
 | 
						||
		_, keyRes, _ := pd.dc.Query("SELECT constraint_name FROM information_schema.table_constraints WHERE constraint_schema = $1 AND table_name = $2 AND constraint_type in ('PRIMARY KEY', 'UNIQUE') ", pd.currentSchema(), tableName)
 | 
						||
		if len(keyRes) > 0 {
 | 
						||
			for _, re := range keyRes {
 | 
						||
				key := anyx.ToString(re["constraint_name"])
 | 
						||
				if key != "" {
 | 
						||
					suffix += fmt.Sprintf(" \n on conflict on constraint %s do update set %s \n", key, strings.Join(updateColumns, ", "))
 | 
						||
				}
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return suffix
 | 
						||
}
 | 
						||
 | 
						||
// 高斯db唯一键冲突策略,使用ON DUPLICATE KEY UPDATE 参考:https://support.huaweicloud.com/distributed-devg-v3-gaussdb/gaussdb-12-0607.html#ZH-CN_TOPIC_0000001633948138
 | 
						||
func (pd PgsqlDialect) gaussOnDuplicateStrategySql(duplicateStrategy int, tableName string, columns []string) string {
 | 
						||
	suffix := ""
 | 
						||
	if duplicateStrategy == dbi.DuplicateStrategyIgnore {
 | 
						||
		suffix = " \n ON DUPLICATE KEY UPDATE NOTHING"
 | 
						||
	} else if duplicateStrategy == dbi.DuplicateStrategyUpdate {
 | 
						||
 | 
						||
		// 查出表里的唯一键涉及的字段
 | 
						||
		var uniqueColumns []string
 | 
						||
		indexs, err := pd.GetMetaData().GetTableIndex(tableName)
 | 
						||
		if err == nil {
 | 
						||
			for _, index := range indexs {
 | 
						||
				if index.IsUnique {
 | 
						||
					cols := strings.Split(index.ColumnName, ",")
 | 
						||
					for _, col := range cols {
 | 
						||
						if !collx.ArrayContains(uniqueColumns, strings.ToLower(col)) {
 | 
						||
							uniqueColumns = append(uniqueColumns, strings.ToLower(col))
 | 
						||
						}
 | 
						||
					}
 | 
						||
				}
 | 
						||
			}
 | 
						||
		}
 | 
						||
 | 
						||
		suffix = " \n ON DUPLICATE KEY UPDATE "
 | 
						||
		for i, col := range columns {
 | 
						||
			// ON DUPLICATE KEY UPDATE语句不支持更新唯一键字段,所以得去掉
 | 
						||
			if !collx.ArrayContains(uniqueColumns, pd.dc.Info.Type.RemoveQuote(strings.ToLower(col))) {
 | 
						||
				suffix += fmt.Sprintf("%s = excluded.%s", col, col)
 | 
						||
				if i < len(columns)-1 {
 | 
						||
					suffix += ", "
 | 
						||
				}
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return suffix
 | 
						||
}
 | 
						||
 | 
						||
// 从连接信息中获取数据库和schema信息
 | 
						||
func (pd *PgsqlDialect) currentSchema() string {
 | 
						||
	dbName := pd.dc.Info.Database
 | 
						||
	schema := ""
 | 
						||
	arr := strings.Split(dbName, "/")
 | 
						||
	if len(arr) == 2 {
 | 
						||
		schema = arr[1]
 | 
						||
	}
 | 
						||
	return schema
 | 
						||
}
 | 
						||
 | 
						||
func (pd *PgsqlDialect) GetDataConverter() dbi.DataConverter {
 | 
						||
	return converter
 | 
						||
}
 | 
						||
 | 
						||
var (
 | 
						||
	// 数字类型
 | 
						||
	numberRegexp = regexp.MustCompile(`(?i)int|double|float|number|decimal|byte|bit`)
 | 
						||
	// 日期时间类型
 | 
						||
	datetimeRegexp = regexp.MustCompile(`(?i)datetime|timestamp`)
 | 
						||
	// 日期类型
 | 
						||
	dateRegexp = regexp.MustCompile(`(?i)date`)
 | 
						||
	// 时间类型
 | 
						||
	timeRegexp = regexp.MustCompile(`(?i)time`)
 | 
						||
 | 
						||
	converter = new(DataConverter)
 | 
						||
)
 | 
						||
 | 
						||
type DataConverter struct {
 | 
						||
}
 | 
						||
 | 
						||
func (dc *DataConverter) GetDataType(dbColumnType string) dbi.DataType {
 | 
						||
	if numberRegexp.MatchString(dbColumnType) {
 | 
						||
		return dbi.DataTypeNumber
 | 
						||
	}
 | 
						||
	// 日期时间类型
 | 
						||
	if datetimeRegexp.MatchString(dbColumnType) {
 | 
						||
		return dbi.DataTypeDateTime
 | 
						||
	}
 | 
						||
	// 日期类型
 | 
						||
	if dateRegexp.MatchString(dbColumnType) {
 | 
						||
		return dbi.DataTypeDate
 | 
						||
	}
 | 
						||
	// 时间类型
 | 
						||
	if timeRegexp.MatchString(dbColumnType) {
 | 
						||
		return dbi.DataTypeTime
 | 
						||
	}
 | 
						||
	return dbi.DataTypeString
 | 
						||
}
 | 
						||
 | 
						||
func (dc *DataConverter) FormatData(dbColumnValue any, dataType dbi.DataType) string {
 | 
						||
	str := fmt.Sprintf("%v", dbColumnValue)
 | 
						||
	switch dataType {
 | 
						||
	case dbi.DataTypeDateTime: // "2024-01-02T22:16:28.545377+08:00"
 | 
						||
		res, _ := time.Parse(time.RFC3339, str)
 | 
						||
		return res.Format(time.DateTime)
 | 
						||
	case dbi.DataTypeDate: //  "2024-01-02T00:00:00Z"
 | 
						||
		res, _ := time.Parse(time.RFC3339, str)
 | 
						||
		return res.Format(time.DateOnly)
 | 
						||
	case dbi.DataTypeTime: // "0000-01-01T22:16:28.545075+08:00"
 | 
						||
		res, _ := time.Parse(time.RFC3339, str)
 | 
						||
		return res.Format(time.TimeOnly)
 | 
						||
	}
 | 
						||
	return anyx.ConvString(dbColumnValue)
 | 
						||
}
 | 
						||
 | 
						||
func (dc *DataConverter) ParseData(dbColumnValue any, dataType dbi.DataType) any {
 | 
						||
	// 如果dataType是datetime而dbColumnValue是string类型,则需要转换为time.Time类型
 | 
						||
	_, ok := dbColumnValue.(string)
 | 
						||
	if dataType == dbi.DataTypeDateTime && ok {
 | 
						||
		res, _ := time.Parse(time.RFC3339, anyx.ToString(dbColumnValue))
 | 
						||
		return res
 | 
						||
	}
 | 
						||
	if dataType == dbi.DataTypeDate && ok {
 | 
						||
		res, _ := time.Parse(time.DateOnly, anyx.ToString(dbColumnValue))
 | 
						||
		return res
 | 
						||
	}
 | 
						||
	if dataType == dbi.DataTypeTime && ok {
 | 
						||
		res, _ := time.Parse(time.TimeOnly, anyx.ToString(dbColumnValue))
 | 
						||
		return res
 | 
						||
	}
 | 
						||
	return dbColumnValue
 | 
						||
}
 | 
						||
 | 
						||
func (pd *PgsqlDialect) IsGauss() bool {
 | 
						||
	return strings.Contains(pd.dc.Info.Params, "gauss")
 | 
						||
}
 | 
						||
 | 
						||
func (pd *PgsqlDialect) CopyTable(copy *dbi.DbCopyTable) error {
 | 
						||
	tableName := copy.TableName
 | 
						||
	// 生成新表名,为老表明+_copy_时间戳
 | 
						||
	newTableName := tableName + "_copy_" + time.Now().Format("20060102150405")
 | 
						||
	// 执行根据旧表创建新表
 | 
						||
	_, err := pd.dc.Exec(fmt.Sprintf("create table %s (like %s)", newTableName, tableName))
 | 
						||
	if err != nil {
 | 
						||
		return err
 | 
						||
	}
 | 
						||
 | 
						||
	// 复制数据
 | 
						||
	if copy.CopyData {
 | 
						||
		go func() {
 | 
						||
			_, _ = pd.dc.Exec(fmt.Sprintf("insert into %s select * from %s", newTableName, tableName))
 | 
						||
		}()
 | 
						||
	}
 | 
						||
 | 
						||
	// 查询旧表的自增字段名 重新设置新表的序列序列器
 | 
						||
	_, res, err := pd.dc.Query(fmt.Sprintf("select column_name from information_schema.columns where table_name = '%s' and column_default like 'nextval%%'", tableName))
 | 
						||
	if err != nil {
 | 
						||
		return err
 | 
						||
	}
 | 
						||
 | 
						||
	for _, re := range res {
 | 
						||
		colName := anyx.ConvString(re["column_name"])
 | 
						||
		if colName != "" {
 | 
						||
 | 
						||
			// 查询自增列当前最大值
 | 
						||
			_, maxRes, err := pd.dc.Query(fmt.Sprintf("select max(%s) max_val from %s", colName, tableName))
 | 
						||
			if err != nil {
 | 
						||
				return err
 | 
						||
			}
 | 
						||
			maxVal := anyx.ConvInt(maxRes[0]["max_val"])
 | 
						||
			// 序列起始值为1或当前最大值+1
 | 
						||
			if maxVal <= 0 {
 | 
						||
				maxVal = 1
 | 
						||
			} else {
 | 
						||
				maxVal += 1
 | 
						||
			}
 | 
						||
 | 
						||
			// 之所以不用tableName_colName_seq是因为gauss会自动创建同名的序列,且无法修改序列起始值,所以直接使用新序列值
 | 
						||
			newSeqName := fmt.Sprintf("%s_%s_copy_seq", newTableName, colName)
 | 
						||
 | 
						||
			// 创建自增序列,当前最大值为旧表最大值
 | 
						||
			_, err = pd.dc.Exec(fmt.Sprintf("CREATE SEQUENCE %s START %d INCREMENT 1", newSeqName, maxVal))
 | 
						||
			if err != nil {
 | 
						||
				return err
 | 
						||
			}
 | 
						||
			// 将新表的自增主键序列与主键列相关联
 | 
						||
			_, err = pd.dc.Exec(fmt.Sprintf("alter table %s alter column %s set default nextval('%s')", newTableName, colName, newSeqName))
 | 
						||
			if err != nil {
 | 
						||
				return err
 | 
						||
			}
 | 
						||
		}
 | 
						||
	}
 | 
						||
	return err
 | 
						||
}
 |